
1.

2.

211hw5_S11
Homework 5 (Due Monday 2/21/2011 at 10:00am)
Submit this assignment via Owl-Space In contrast to the previous assignments, submit each problem in a separate file: , , , and .ss 1.ss 2.ss 3.ss 4.ss
(if you do the extra credit problem). Unfortunately, none of the languages supported by DrScheme will allow these files to be combined. The Pretty Big
Scheme language allows top-level indentifiers (functions and variables) to be redefined, but it does support . All of the student not check-expect
languages--the only ones that support --prohibit redefinition.check-expect

Embed answers that are not program text in a Scheme block comment or block commenting brackets (#| and |#).

Use the language.Intermediate Student with lambda

Given the Scheme structure definitions:

(define-struct sum (left right))
(define-struct prod (left right))
(define-struct diff (left right))
(define-struct quot (left right))

an is either:arith-expr

a number ,n
a sum ,(make-sum ae1 ae2)
a product ,(make-prod ae1 ae2)
a difference , or(make-diff ae1 ae2)
a quotient (make-quot ae1 ae2)

where is a Scheme number, and and are .n ae1 ae2 arith-exprs

The following 4 exercises involve the data type . If you are asked to write a function(s), follow the design recipe: contract, purpose, examplesarith-expr
/tests, template instantiation, code, testing (which happens automatically when the examples are given in form). Follow the same (check-expect ...)
recipe for any help function that you introduce.

 (40 pts.) Write an evaluator for arithmetic expressions as follows:
Write the (function) template for arith-expr
Write a function that maps an to the corresponding "list" representation in Scheme. Numbers are unchanged. to-list arith-expr
Some other examples include:

(to-list (make-sum (make-prod 4 7) 25)) => '(+ (* 4 7) 25)
(to-list (make-quot (make-diff 4 7) 25)) => '(/ (- 4 7) 25)

Note: you need to define the output type (named) for this function, but you can omit the template because this scheme-expr
assignment does not include any functions that process this type.
Write a function that evaluates an . Your evaluator should produce exactly the same eval: arith-expr -> number arith-expr
result for an that Scheme evaluation would produce for the list representation . arith-expr E (to-list E)

 (40 pts.) Extend the definition of } as follows:<arith-expr>
Add a clause for variables represented as Scheme symbols.
Write the (function) template for this definition.
Modify your definition of to support the new definition of arith-expr.to-list
Given the Scheme structure definition:

(define-structure binding (var val))

a is where is a symbol and is a number and an is a . Write binding (make-binding s n) s n environment (list-of binding)
a (function) template for processing an .environment
Define a top-level variable (constant) that is bound to the empty environment containing no bindings (, the empty list).empty-env i.e.
Write a function that takes environment , a symbol , and a number , and returns an extended environment identical to extend env s n env
except that it adds the additional binding of to .s n
The definition of is trivial; it requires no recursion. As a result, satisfies the invariantextend extend

(check-expect (extend empty-env s n) (list (make-binding s n)))

and

2.

3.

4.

(extend empty-env 'a 4) => (list (make-binding 'a 4))

In the remainder of the problem, use and to define example environments for test cases.empty-env extend
Write a function that takes a symbol and an environment and returns the first binding in with a component that lookup s env env var
equals . If no match is found, returns empty. Note that the return type of is not simply because it can return s lookup lookup binding e

. Define the a new union type called for the the return type.mpty option-binding
Write a new function for the new definition of . The new takes arguments: an to evaluate eval arith-expr eval two arith-expr E
and an specifying the values of free variables in . For example,environment env E

(eval 'x (extend empty-env 'x 17)) => 17
(eval (make-prod 4 7) (extend empty-env 'x 17)) = 28
(eval 'y (extend empty-env 'x 17)) => some form of run-time error

If an contains a free variable that is not bound in the , then will naturally produce arith-expr E environment env (eval E env)
some form of run-time error if you have correctly coded . Do explicitly test for this form of error. eval not

 (20 pts.) An is really a finite function (a finite set of ordered pairs). It is in the sense that it can be completely defined by a environment finite
finite table, which is not true of nearly all the primitive and library functions in Scheme (and other programming languages). Even the identity
function is finite. For the purpose of this exercise, we redefine the type as .not environment (symbol -> option-binding)

Rewrite to use defined as a finite function in instead of as a eval environment (symbol -> option-binding) (list-of
. If you cleanly coded your definition of in the preceding problem using , , and ,option-binding) eval lookup make-binding extend

all that you have to do to your solution to the previous problem is redefine the bindings of , , and , and revise lookup empty-env extend
your test cases for . You can literally copy the entire text of your solution to problem 2; change the definitions of , extend lookup empty-

, and ; update your documentation (annotations) concerning the type; and revise your tests for . env extend environment extend
Note that cannot be tested (since the result is a function!) without using to examine it. (If you wrote a correct solution to extend lookup
problem 2, you can do this problem is less than 15 minutes!)

 you can use -notation to define a constant function for , and can be defined as a functional that takes Hint: lambda empty-env extend
a function (representing an environment) and adds a new pair to the function--using a embedded inside a -expression. if lambda

Extra Credit (50 pts.) Add support for -expressions in your evaluator as follows:lambda
Extend the definition of by adding a clause for unary -expressions and a clause for unary applications of an <arith-expr> lambda ari

 to an . Use the name for the structure representing a -expression and the names and for th-expr arith-expr lam lambda var body
the accessors of this structure. Use the name for the structure representing an application and the names and for the app head arg
accessors of this structure. Note that the head of an is an not a .app arith-expr lam
Write a (function) template for the newest definition of .arith-expr
Extend the definition of to support the newest definition of .to-list arith-expr
Extend the definition of to support the newest definition of . Note that can now return functions as well as eval arith-expr eval
numbers. Your biggest challenge is determining a good representation for function values. What does return for a input? That eval lam
input may contain free variables. In principle, you could represent the value of the input by a revised (with no free variables) lam lam
obtained by substituting the values for free variables from the environment input (just like we do in hand-evaluation). But this approach is
tedious and computationally expensive. A better strategy is to define a structure type (called a) to represent a function value. The closure
structure type must contain the original and a description of what substitution would have been made, deferring the actual lam
substitution just as defers substitutions by maintaining an environment.eval

	211hw5_S11

