
211hw10_S11
Homework 10: SimLaundry 2010
Due Wednesday, 13 April 2010 at 11:00 A.M.

Preface
This assignment has a long description but the coding involved is straightforward. Most of the code for the full application has been written as support code
by the course staff. In our solution, the remaining code that you must write (excluding test code) consists of approximately 250 lines (including comments
and whitespace lines).

Overview
Rice student J. H. Acker has decided to drop out of school and become a high-tech billionaire by marketing a virtual reality game based on Acker's own
personal hygiene. The game is called SimLaundry 2010, and it models the laundry habits of a typical college student. In this assignment, you will help
Acker create this game, in return for a cut of the profits and a good Comp 211 grade.

We will assume there are only three types of clothing: shirts, pants, and socks. (We will all enjoy this assignment a lot more if we don't have to think about
Acker's underwear.) Acker neatly stacks clean shirts, pants, and socks in piles on a shelf in his closet.separate

When changing clothing, Acker throws dirty clothing onto a pile in the corner of the closet, then selects the top clean item of a particular type from the
closet shelf; the resulting outfits rarely coordinate, but Acker is no slave to fashion. If there are no clean clothes of a particular variety, Acker resorts to
using dirty laundry and removes the recently worn article of that type from dirty laundry pile, smells it, and always decides it can be worn again after least
all. (Acker never has to go naked, because there is at least one item of the desired type in the laundry, namely the one Acker just removed.)

When doing laundry, Acker removes () or fewer, if the pile isn't that large, items from the top of the dirty clothes fifteen StudentEnvironment.MAX_LOAD
pile. In the simulation, a load of clothes is laundered and dried instantaneously and placed on a table for clean clothes reserved for Acker in the laundry
room. Acker changes clothes so infrequently that the washing and drying time is negligible, so our simulation is a good approximation. The garments in
each load of clean clothes are piled in exactly the same order they appeared in the dirty pile. Acker fills the washer and dryer so full that the clothing
doesn't get jumbled up.

Eventually Acker retrieves the oldest clean laundry load, folds it, and places it on the closet shelf. In the process, he reverses the order of the clothing
within the load; whatever was on the bottom of the pile on the laundry table is now on top of the appropriate pile (shirts, pants, or socks) of clean clothes
on the shelf. Hence, if a blue shirt was on top of a white one in the dirty clothes pile and they are washed in the same load, then the white shirt will be on
top of the blue one on the closet shelf.

Acker periodically receives gifts of clothing from relatives, which are placed on top of the appropriate pile on the closet shelf. He buys any clothes.never

Acker never discards clothing, no matter how threadbare, but does, on rare occasions, lose some. While Acker does not lose clothes being worn, but they
can be lost from anywhere else, including the closet shelf, the dirty laundry pile, and the laundry room.

For the purposes of this assignment, a pair of socks is an indivisible article of clothing; we make the unrealistic assumptions that single socks are never
lost and that Acker does not wear mismatched socks. Also, you needn't be any more concerned than Acker is about separating white and dark laundry or
other such niceties.

What You Must Do

 Download the supplied code here: HW10.zip

The course staff is providing a framework for writing this program that includes many classes and interfaces. The framework is packaged as a zipped
DrJava project. This file will unzip into a self-contained file tree with root directory . This directory contains the following:HW10

hw10.drjava -- the DrJava project file for this assignment. Everything should already be set properly in it. Just start DrJava and go to the Pro
 menu item to open it.ject/Open...

src folder - the root of the source tree. The packages are , so the actual Java files are quite a ways edu.rice.comp211.laundry.XXX
down. This is the "Project Root" of the DrJava project.
classes folder- the root of the compiled code tree. This is this is the "Build Directory" of the DrJava project.
data folder -- Test files (") and expected output files () that you can use to test your work. This is the "Working xxxIn.txt xxxOut.txt
Directory" of the DrJava project.
doc folder -- The Javadocs for the project. Open the file in your browser to see the Javadocsindex.html

After unzipping the file, you can open the DrJava laundry project by starting DrJava, setting the to , laundry.zip Language Level Full Java pulling
 . In the file chooser that pops up, select the project profile file down the Project menu and selecting the Open command laundry.drjava

embedded in the file in the unzipped file tree for . You can save the project state at any point during a DrJava session using the laundry.zip Save
command in the menu. You can also save individual files within the project using the button on command file or the menu.Project Save File

https://wiki.rice.edu/confluence/download/attachments/10946873/HW10.zip?version=1&modificationDate=1367952353884&api=v2

1.
2.
3.
4.
5.
6.

Your assignment is to fill in the stubbed out members of the All required areas in the code are clearly marked with comments DoCommandVisitor
for the student to complete the code in that area. In the process you may choose to define some new classes to support your class DoCommandVisitor
implementation. The class which repeatedly invokes models the laundry habits of Acker. In our test simulations, we will Student DoCommandVisitor
typically only create a single instance of representing Acker, but your code should support multiple students (e.g., Acker and his brothers) at a Student
time. Since these students do not interact with each other, supporting this form of multiplicity is a trivial consequence of OO coding style used in the
framework.

The For example, if the expected output of String return value of the cases of the DoCommandVisitor is the output of processing that Command.
processing a command is " " then that is the object that you should return from the Change doffed blue shirt, donned red shirt String
appropriate case when processing that command object, i.e. it your visitor object. Change accepts DoCommandVisitor

Running the Simulation

GUI Mode

The supplied DrJava project is set up to run the GUI version of the simulation. Thus, clicking on the button in DrJava will run the GUI Run Project
version of the simulation (), which enables you to load test files and either step edu.rice.comp211.laundry.ui.SimLaundry2010Application
through them one command at a time or run all the commands automatically. The output will appear in the Interactions pane.

The GUI version also allows you to run individual commands. Select the " " mode from the drop list in the lower left corner of the window. The GUI will GUI
then allow you to create and run one command at a time. This is useful for testing a single command, but may be more tedious than running in text mode
(see below).

The " " mode allows you to simulate multiple students sharing laundry piles. Each student runs a difffernt set of commands from individually Threaded
specified input files. There appears to be a latent threading bug that has nothing to do with the student code that can pop up occasionally and crash the
simulation. Running multiple students is not a requirement here and nothing in the student-written code would affect this, so don't worry about running in T

 mode, though it is kind of interesting to watch.hreaded

Text Mode

You may find it easier to run the simulation as a textual input application. Simply right-click the {edu.rice.comp211.laundry.Main.java}} file and select "Run
" or change the the DrJava project properties to change the to this classand then use the button. File Main Class Run Project

In the text mode, you simply type in each command, such as " " into the input box that will appear in the Interactions pane. See receive blue socks
below for more information on the command format. The output will show immediately below in the Interactions pane and new input box will appear.

Note: MUST be words. adjectives SINGLE

Testing

Complete testing of your DoCommandVisitor cases is required.

Test each case by creating a test cases that call each case explicitly with known host and Command parameters. Then proceed to test the
visitor as a whole.

See sample laundry test class for examples of how to test an entire command both manually and edu.rice.comp211.laundry.tests.LaundryTest
by using an input test file and comparison output file.

The button in DrJava runs all of the JUnit test files in the project.Test Project

Use the test files in the folder as guides for inputs and expected outputs. For example, given the text input in , your program should data sampleIn.txt
generate the text in . is a fairly extensive test. You'll probably want to start with something smaller such as sampleOut.txt testIn.txt sampleIn.

 or though. txt tinyIn.txt

Initially, the provided framework should compile but will fail because most of the members in the key class have been LaundryTest DoCommandVisitor
stubbed out.

Important Note: When the simulation begins, Acker is wearing white pants, white socks, and a white shirt. The closet shelf, dirty laundry pile, and
laundry facilities are all initially empty.

Assume that the supplied test files are NOT exhaustive!! You are responsible for the complete testing of your code!

Development Process Recommendation

It is highly recommended that you take a step-by-step, highly structured approach to this assignment. Take SMALL steps, before testing thoroughly
moving to the next step.

Write and test the easiest cases of first and then move on to the harder cases. In the opinion of the staff, the case in order from DoCommandVisitor
easiest to hardest are approximately (there is definitely room for argument here!)

forOutfit
forReceive
forFold
forLaunder
forLose
forChange

Grading

Your solution will be graded using the textual interface. Graphical interfaces are notoriously difficult to test and all of the graphical interface code is part of
our support code anyway. Your correctness and testing scores (which each count 25% of your grade) will be based on how well your implementation of
each command complies with the given specifications and on how well you demonstrate this compliance with test cases. You can test your
DoCommandVisitor using the same approach given in our class. These tests use the method in to drive the LaundryTest.java simulate Student
execution of . If you write some utility methods fopr you should separately test these methods. You are NOT responsible DoCommandVisitor BiLists
for testing any of our support code in including the class.HW10.zip BiList

A major portion of your grade (35%) will be based on your program style. If you write your code in the OO style practiced in this course, you should do very
well on this aspect of the assignment. The remaining 15% of your grade is based on your documentation, particularly your comments for classes javadoc
and methods.

Delegation Model Programming vs. Imperative Programming

This assignment will require that you write code that is a mixture of delegation model programming, where one delegates from one object to another to
achieve the desired processing, and imperative programming where a defined control flow is set up, such as with or {while}} loop constructs and if-else
the objects are processed by following this constructed control flow and processing information extracted from the relevant objects. This mixture is
how you can expect a real world program to be constructed -- the world isn't so clean that only one paradigm can totally rule in any situation.

The best approach is to default to a delegation mode, looking to create your processing algorithms as a delegation chain from one object to the
next. However, you will discover that the nature of certain objects, the in particular, will force you into an imperative mode where you will have to BiList
use the 's iterators in conjunction with conditionals and loops. Effeciency concerns (see below) will also play a role in which programming style BiList
you are using at any given moment.

Remember the mantra of delegation model programming: Visitors are If your process depends on the type of an object, then delegate to that object.
expressly designed for exactly this sort of type-dependent delegation model processing.

Use imperative programming sparingly -- only if and when you absolutely need it!

You are not at all required to do this, but as a benchmark, it should be noted that the staff solution implements each case of as a DoCommandVisitor
single statement. This should tell you something about the power of delegation in this assignment.return

Form of Event Commands
Your program executes a loop that repeatedly reads input from an input "process" that returns objects. The input process (provided by our Command
supporting framework) reads a series of event description commands, one to a line, either from the console or from a file. The input process converts a
stream of characters to objects which are passed to your program.Command

In addition to performing the specified command, your program should output a brief description of for each command that it performs in the exact format
. In the following list of commands, the line specifies what your program should print.described below output

The command

receive <adjective> <article>

means Acker received a gift of the specified article (<adjective> <article>) of clothing. In response, the simulation outputs

received <adjective> <article>

and updates the state of the . For example,StudentEnvironment

receive argyle socks

generates

received argyle socks

and adds the to the top of the pile on the shelf. argyle socks socks

The command

lose <adjective> <article>

means Acker misplaced the specified article of clothing. If the item exists and Acker is not wearing it, the simulation outputs

lost <adjective> <article>

and updates the state of the accordingly. If Acker is wearing it, the simulation outputsStudentEnvironment

Acker is wearing <adjective> <article>

and leaves the unchanged. If the item , the simulation outputsStudentEnvironment does not exist

<adjective> <article> does not exist

and leaves the (i.e. Acker) unchanged. StudentEnvironment

The command

change <article>

means Acker doffed the specified article of clothing, discarding it in the dirty laundry pile, and donned a replacement article using the protocol
described above. In response, the simulation outputs

doffed <adjective> <article>, donned <adjective> <article>

describing the article doffed and the article donned.
If Acker has no clean garment of the specified type, the status string returned should indicate this. For instance, suppose Acker was asked to
change his pants when he has no clean pants and is already wearing :black-ink-grunge pants

Nothing to change into! Doffed black-ink-grunge pants, donned black-ink-grunge pants

The command

launder

means Acker washed and dried a load of laundry. If the dirty clothes pile is not empty, the simulation outputs

washed <adjective> <article>, ..., <adjective> <article>

listing the clothes in the order they were removed from the dirty clothes pile. If the dirty clothes pile is empty, the simulation outputs

nothing to wash

The command

fold

means Acker retrieved a load of laundry, folded it, and put it on the closet shelf. If a load of laundry is available, the simulation outputs

folded <adjective> <article>, ..., <adjective> <article>

for the oldest unfolded load. List the clothes in the order they are placed on the shelf. Hence the top garment on the shelf should be the last one
listed. If no load of laundry has been washed and dried, then the simulation outputs

nothing to fold

If the oldest load is empty (because all items in it were lost), the simulation outputs

folded empty load

The command

outfit

asks "what is Acker wearing?" The simulation outputs

wearing <adjective> <shirt>, <adjective> pants, <adjective> socks

Click here for Supporting Code and Programming Details

Efficiency

For this assignment, you should be concerned about relevant asymptotic efficiency. Choose the simplest representation that yields good performance on
inputs of plausible size.

Changing an article of clothing should take constant time (, no searching should be done) provided there's an appropriate garment on the shelf. If the i.e.
shelf contains no clothing of that type, then in the common case we expect to find one of those near the bottom of the pile, no matter how big the pile is:
make that case fast. Infrequent operations need not be particularly fast, because they have little impact on the running time of the entire system. (Suppose
one operation accounts for 5% of the running time, and we can make it run 10 times as fast. How does that compare to making an operation that accounts
for 25% of the running time twice as fast?)

Example
With Acker initially wearing white shirt, socks, and pants, given the input:

https://wiki.rice.edu/confluence/display/TCOMP211/hw10details_S11

receive blue socks
receive green pants
receive red shirt
change socks
receive yellow shirt
change shirt
outfit
change socks
launder
change pants
fold
change socks

your program should produce:

received blue socks
received green pants
received red shirt
doffed white socks, donned blue socks
received yellow shirt
doffed white shirt, donned yellow shirt
wearing yellow shirt, white pants, blue socks
doffed blue socks, donned white socks
washed blue socks, white shirt
doffed white pants, donned green pants
folded blue socks, white shirt
doffed white socks, donned blue socks

The sample input and output files and are a good starting point for testing your program but they are far from exhaustive.tinyIn.txt tinyOut.txt

 You are responsible for testing your own program.

Supplemental Program Running Information

The program starts execution using the special method in class . The method interface is public static void main(String[] args) Main main
the only vehicle for executing Java programs directly from the command line. (DrJava has a method for this reason.)main

Since your class containing is called , you can enter the linemain edu.rice.comp211.laundry.Main

java edu.rice.comp211.laundry.Main -t <infile>

in the DrJava Interactions Pane to run the program on input from file . Output will be displayed in the DrJava console. If you simply hit the <infile> Run
 button, this action is equivalent to entering the lineProject

java edu.rice.comp211.laundry.Main

which runs the program with terminal input as the input file. In this case, the program will prompt you for the input of each command in a box within the
Interactions Pane.

You can also run the program from the command line (a terminal) in the directory of the program file tree.laundry
The input line

java edu.rice.comp211.laundry.Main -t <infile>

should produce exactly the same results as executing the same line in the DrJava Interactions Pane. You can redirect the output to a the file <outfile>
by typing

java edu.rice.comp211.laundry.Main -t <infile> > <outfile>

DrJava does not support output redirection but you can copy the text printed in the console and paste it into a file using your editor of choice.

	211hw10_S11

