211lab10_S11

Lab 10 Java Packages, Generics;

Java Packages

A Java package is a grouping of classes similar to the notion of a directory is a grouping of files. Packages are used to help avoid name clashes and to
hide particular pieces of code from the clients. A package has a name, suchas utility orjava.lang. util .Ingeneral, a package name is a series of
strings of alphanumeric characters (starting with an alphabetic character) and separated by periods. To make a java class part of a particular package, say
funLi st , you must add the declaration package f unLi st ; to the very top of the class source file.

Also, you will need to put the file in the directory structure that mirrors the package name. For example, the java classes that belong to the package f unLi
st should be in a directory also named funList. If you don't do this, it will still compile, but it won't run correctly.

NOTE: DrJavalanguage levels do not support packaging. We must use Full Java to work with packages.

Exercises:

® 1. Create a subdirectory called lab10 for all the files of this lab. Create and save a separate file for each of the following classes and interface.

/**
* Abstract list structure.
*/
public abstract class IntList {
public abstract Cbject accept(IntListVisitor v);
public ConslntList cons(int n) {
return new ConsintList(n, this);
}
}

/**

* Concrete enpty |ist structure containing nothing.

*/

public class EnptylntList extends IntList {
public static final EnptylntList ONLY = new EnptylntList();
private EnptylntList() {
}

public Cbject accept(IntListVisitor v) {
return v.forEnptylntList(this);
}
}

/*-k
* Concrete non-enpty list structure containing an int, called first,
* and a rest, which is a list structure.
*/
public class ConslntList extends IntList {
private int first;
private IntList rest;

/* NOTE: Progranmer nmust wite constructor code and gettors code in full Java.
*/
public ConsintList(int f, IntList r) {
first = f;
rest =r;

}

public int first() {
return first;

}

public IntList rest() {
return rest;

}

public Cbject accept(IntListVisitor v) {
return v.forConslntList(this);
}
}

/**

* Abstract operation on IntList.

*/

public interface IntListVisitor {
public Onject forEnptylntlList(EnptylntList host);
public Cbject forConslntList(ConslntList host);

® 2. Add the declaration package f unLi st ; to the top of | nt Li st . j ava . Compile it using DrJavaTools/Compile Current document. You should
get an error message saying that you are in the wrong package. Close the file for now.

You need to create a subdirectory called f unLi st and move | nt Li st . j ava intoit. The full class name for I nt Li st isnow funlist.IntList.

Reopen the file in the f unLi st subdirectory. Now compile again. You should get error messages saying it can't find cl ass I ntListVisitor andcl as
s ConslntLi st this time. You will need to package all the other classes/intefaces and move them into appropriate subdirectories.

® 3. Add the package f unLi st ; declaration to the top of Enpt yl nt Li st.java, ConstIntList.java,andIntListVisitor.java,and
move them into the f unLi st subdirectory. You should be able to compile each file individually. Try it.

Note: if you use the command window to compile with the command javac, you should always compile from your project's main directory. If you compile
from within a package subdirectory, it doesn't find all the supporting definitions.

We can't run anything yet, because that's just a piece of the whole program.

® 4. Create a JUnit test class called Test Enpt yI nt Li st . Do not make Test Enpt yl nt Li st . j ava part of the package. Test Enpt yl nt Li st .
j ava does not have a package name, and is thus said to be in the no-name (or default) package. Save Test Enpt yLi st . j ava inlabl0
subdirectory (right above f unl i st).

Add code to test the accept method of Enpt yI nt Li st . What can we do here?
If you try to compile Test Enpt yl nt Li st . j ava now, you will get an error message. Try it to see what happens.

You need to add the statement i nport funLi st.* ;tothe top of Test Enpt yl nt Li st . j ava to indicate to the compiler that you are using all the public
classes in that package. Try to compile it again. Is everything OK?

Now, remove the publ i c access from the Enpt yI nt Li st class. By default, a class is "package-private", i.e., it is known within the package, but not from
outside. Try to compile again. You should see a few error messages saying that you can't use Enpt yl nt Li st . j ava because it is not public. This is
because the Test Enpt yI nt Li st class is not part of the f unLi st package. One way to resolve this problem by making Test Enpt yI nt Li st part of the
funLi st package. A class of a package can access all the classes (public or "package-private”) in the package. However this is not a good solution in
general because a client may be using many classes from different packages, but no class can be part of more than one package. For now, just make Enp
tylntList.java public again, and recompile Test Enpt yI nt Li st . j ava . You should get no error. Try to run Test _Li st . j ava now by click the Test
button in DrJava.

Java Generics

Please refer to the Lecture 30 notes. Also, download and open the contained DrJava project in lec29_code.zip .
Practice writing some visitors using generics:

1. Forward accumulation sum of a list of integers.
2. Concatenate, with spaces in between, all the elements of a list of Strings.
3. A single ToString visitor class that could be used to create instances that could then be used on any given type of list.

DrJava Projects

Here's some more information on using DrJava's project capabiltiies:
DrJavaprovides a utility called Project as a way to manage large Java programs with many files and many packages. We will illustrate the use of
DrJavaProject by writing a few visitors for the f unl i st package.

In general, a project has a bunch of java files (the source code) and class files. It is a good idea to separate the java files from the compiled class files by
creating a subdirectory called bi n for the class files and sr ¢ for the java files.

® 1. Inside of lab10 subdirectory, create subdirectory called bin and a subdirectory called src. Move the f unl i st subdirectory inside of src.

® 2.1In!DrJava, use the menu Project/New to create a DrJavaproject, save it as Li st Vi sPr oj inside of | ab10 . A dialog window will popup asking
for the Project Root, Build Directory and Working Directory, etc.

Set the project root directory lab10, the build directory to lab10/ bi n and working directory to lab10/ sr ¢ . Click OK and now we have an empty project file
called {{ListVisProj.drjava }} saved in xml format. Take a look at the subdirectory lab10 to see what's there.

® 3. To add the whole f unl i st package to the project, use the File/Open Folder and select the folder sr ¢ (and be sure the check the Open folder
recursively checkbox). All the java files in f unl i st should be displayed. Save the project. Compile the project by clicking on the Compile Project
button. Everything should compile. Check the subdirectory bin to see all the class files generated by the compiler.

Now let's write a list visitor to compute the length of a list and add it to the project.

® 4. Here is the list visitor code. It is not quite compilable on purpose.

/**
* Conputes the length of the host list using a tail-recursive
* hel per visitor.
*/
public class GetLength inplements IntListVisitor {
static CGetLength ONLY = new GetLength();
private GetlLength() {
}

| **

* @eturn an | nteger
*
/

https://wiki.rice.edu/confluence/download/attachments/4435937/29-s11.pdf
https://wiki.rice.edu/confluence/download/attachments/4435937/lec29_code.zip

Obj ect forEnmptylntList(EnmptylntList host) {
return O;

}

/**
* @eturn an I nteger
*/
oj ect forConslntList(ConslntList host) {
return host.rest().accept(new GetLengthHel p(1));

}
}
class GetlLengthHelp i nplements IntListVisitor {
int acc;
/1 need constructor
oj ect forEnptylntList(EnmptylntList host) {
return acc ;
}
Obj ect forConslntList(ConslntList host) {
return host.rest().accept(new GetLengthHel p(acc + 1));
}
}

Save it in a subdirectory of f unl i st called visitor. The full class name for Get Lengt h and Get Lengt hHel p are now f unl i st. vi si tor. Get Lengt h
and funlist.visitor. CGetLengt hHel p, respectively. Note that Get Lengt h is publ i ¢ while Get Lengt hHel p is package private. Now try to
compile it! You will see a few error messages. Fix the errors until everything compiles.

® 5. Write a JUnit test class called Test Get Lengt h to test the Get Lengt h visitor written in the above. Save this test class in a subdirectory of
visitor called test. You will need to create a new folder when you try to save the t est class.
1. Add appropriate packaging declaration so that it compiles.

2. Incrementally add test code and incrementally compile the test file.
3. Incrementally run the test code by clicking the Test Project button (or the menu Project/Test Project).

Be sure to save the project code periodically.

® 6. Write a visitor called ToSt r i ng to compute a Scheme-like String representation of the list. (See ListString visitor done in lab 09). Package it in
funlist.visitor . Write stub code only and make sure that everything compiles.
1. Now write a JUnit test class called Test ToSt ri ng to test ToSt ri ng . Package it in the t est subdirectory as done in the above step 5.

Make sure it compiles.
2. Incrementally write ToString and incrementally test it until all the test code pass.

	211lab10_S11

