211hw1l details _S11

Comp211 HW11 Supporting Code Details

Here is alink to the Java 6 APl documentation. Look here for information on any unfamiliar Java class, e.g. HashSet <T> or Vect or <T>:

http://download.oracle.com/javase/6/docs/api/

Core Data Structures

[1] ed.rice. comp2 1 1 sudoku. data. JCel y
6 ed.ice. comp21 1. sudoku. data. I = O edi.rice. comp2 1.1, sudoku, data.ICele:
@ R accept{ICellVisitor <R, P> algo, P[] params)) 1Call ol At ind
@ R forsolved(ICel host, P[] params) © ICell elementAt{int index)
@ HashSet<Integer > getValueSet() id setEl tatiicel o intind
@ R forUnSolved(ICell host, P[] params) @ void setFlementAt{ICel ¢, intindex)
for ih @ Vector<ICelSet> getCelSets() V! ® intsize()
& R forEmpty(ICell host, P[] params) @ void setCellSets(ICellSet]] cellSets) / A
@ int]] getvaluearray() L | !
| A (9 edu.rice.comp211.sudoku.data.Board -~
T
| | <<tocal Assignments> | © ™ e 0..% <<Local Assignment> |
r o " Vector <ICelSet> rows l
| o F vector <ICelSet> cols
| © edu.rice.comp211.sudoku.data. Cell o F Vector <ICelSets blks |
(9% ey, rice. comp21 1, sudokus. data. ACelVisitor| o HashSet<Integer: values & © Board(int order) |
o R defaultValue ° z Vector <ICelSet> cellSets m ICelSet makeEmptyCelSet{int n) [~ - !
@ © ACellVisitor(R defaultValue) @~ Cellfint[] vals) @ Board done() 0% < sk .
@ R forSolved(ICel host, P[] params) @ R accept{ICellVisitor <R P = algo, P[] params)| |
@ R forUnSolved(iCell host, P[] params) @ HashSet<Integer> getValueSet() (9 edu.rice.comp?11.sudoku.data. CellSet]
© R forEmpty(iCell hast, P[] params) @ Vector<ICelSet> getCelSets)) o " long serilVersionUID
@ void setCellsets(ICelSet(] celSets) o' Celset()
@ String toString() ' CelSet(int initialCapacity)
@ int[] getvalueArray() @ Siring toString()

The main data structures are represented by only a few interfaces:

® | Cel | -- asingle square on the Sudoku board.
o A cell has a set of integer values, which are accessible either as a HashSet <I nt eger > or as an array of integers.
o A cell also has a collection (Vector<ICell>) of | Cel | Set s to which it belongs. These are the cell's row, column and block, in that order.
= Don't forget that the cell is also a member of every ICellSet that it references.
© A cell can be in one of three logical states:
=" Empty - there are no values contained in the cell. This corresponds to the situation where the board is unsolvable because a
cell has no possible value.
" Solved - the cell contains exactly one value. If and only if you know for sure that the cell is in this state, then the single value
can be accessed as aCel | . get Val ueArray()[0].
® Unsolved - the cell contains multiple possible values. At most, a cell could contain or der * or der values.
O Cel | is a concrete implementation of | Cel | .
© Anl Cel |l acceptsan| Cel | Vi sitor which has cases for each of the 3 logical states, described above.
" The ACel | Vi si tor class is an abstract convenience class that provide a default return value for any cases that the developer
does not which to override. There is no requirement to use this class, though it may simplify certain code.
® | Cel | Set -- A collection of | Cel | s that represents a row, column or block.
© For convenience sake, the cells are in a distinct order (i.e. left-to right for a row) and thus each cell is addressable by an index value.
© AnlCell Set is|terabl e which means that it can be used in for-each loops, e.g.

for(lCell c : aCellSet) {

® Board -- A set of 3 Vector<ICellSet>'s where each element of the vectoris an | Cel | Set. These vectors represent the entire set of rows,
columns or blocks in a game.
© A Boar d has the ability to make a "deep” copy of itself, where everything, all the way down to the individual cells, is copied. This is the c
| one() method.
© The Boar d also has a utility method for generating empty cell sets, which is used during initialization.
© It should be noted that since every cell appears exactly once in each of the r ows, col s, and bl ks Vect or s of a Boar d, any of those 3
vectors will server equally well as a means to iterate over all the cells of a Boar d

Utility Data Structures

Delegation-model programming and imperative (conditional and loop-based) programming have a fundamental incompatibility: Delegation works by
having code on the inside of an object (i.e. a method of that object) perform the object-specific processes. On the other hand, imperative programming
utilizes program structures (conditionals and loops) which are outside the object to perform object-specific processes. This can cause major architectural
headaches when combining both styles in a program, which is what we are doing here. For instance, see the programming hints section on the previous
wiki page on how to control loops and mutate data while in the middle of a delegation process.

http://download.oracle.com/javase/6/docs/api/
http://download.oracle.com/javase/6/docs/api/java/util/HashSet.html
http://download.oracle.com/javase/6/docs/api/java/util/Vector.html
http://download.oracle.com/javase/6/docs/api/java/lang/Iterable.html

The following utility data structures are designed to handle the situation where an operation has more than 2 or more possible outcomes. While not
entirely optimal, these classes show how clever sub-classing can enable one to re-use classes in multiple situations.

[€] edu.rice, comp211. sudoku,util, UtiHostD

" UtiHostD oMLY

B © UtiHostD()
@ R accept(IUtilVisitor ABCD<R,P> algo, P[] params)
@ String toString()

— >

[€] edu.rice, comp211. sudoku,util. UtiHostC
" UtiHostC ONLY
B © UtiHostC()
@ R accept(IUtilVisitorABC <R.,P > algo, P[] params)
@ R accept(IUtiVisitor ABCD<R,,P = algo, P[] params)
@ String toString()

© edu.rice.comp211,sudoku, util.UtiHostE
" UtiHostB ONLY
B © UtiHostB()

@ R accept(IUtiVisitor ABC <R.,P > algo, P[] params)
@ R accept({IUtilVisitor ABCD <R, P> algo, P[] params)
@ String toString()

€] edu.rice.comp211. sudaoku. util. UtiHostA
" UtiHostA ONLY
 UtiHostAQ)

R accept{IUtilVisitorABCD <R.,P = algo, P[] params)
String toString()

=]
@
@ R accept{IUtilVisitor ABC <R P> algo, P[] params)
@
@

® |UWilHostAB--1Util VisitorAB: A host-visitor set that represents a situation where there are two possible outcomes.

@ R accept(IUtilVisitorAB<R,,P = algo, P[] params) |—

R accept{IUtiVisitorAB <R, P = algo, P[] params) |—

[T comp21 1. sudoku. utl, IUEHos FABCD

[T compe21 1.sudoku. ol IUEViEitorABCO

@ R accept{IUtiVisitor ABCD <R, P> algo, P[] params)

@ R caseD(P[] params)

&3 oty rice. comp 21 1. sudpku. . JUEVEtorABC

[T comp2 1 1. sudoku. utl TUEHost450C

@ R caseC(P[] params)

@ R accept{IUtilVisitor ABC <R.,P = algo, P[] params)

[T comp21 1. sudoku. utf TUEHo=t46

@ R accept(IUtiVisitorAB <R, P> algo, P[] params)

O ecice. compe2i 1sudoku. uil JUEVistorAS

@ R caseA(P[] params)
@ R caseB(P[] params)

There are two

possible concrete hosts, Ut i | Host Aand Ut i | Host B and thus the | Uti | Vi si t or AB visitor has two cases corresponding to these two hosts.

® | UtilHost ABC--1Util VisitorABC: A host-visitor set that represents a situation where there are three possible outcomes.

There are three

possible concrete hosts, Ut i | Host A, Ut i | Host Band Ut i | Host Cand thus the | Uti | Vi si t or ABC visitor has three cases corresponding to

these three hosts.

® | UtilHost ABCD--1Util Visitor ABCD: A host-visitor set that represents a situation where there are four possible outcomes.

There are four

possible concrete hosts, Ut i | Host A, Uti | Host B, Uti | Host Cand Ut i | Host Dand thus the | Ut i | Vi si t or ABCD visitor has four cases

corresponding to these three hosts.

Typically, a method returns a value of type | Ut i | Host AB/ C/ D depending on how many possibilities there are. For instance, a single reduction pass on
the Sudoku board would result in a value of IUtiiIHostABCD, corresponding to the 4 possible outcomes for the board: being still reducible, irreducible,

solved or unsolvable.

The caller of such a method need only to simply delegate to the returned value by having the returned value accept the proper visitor.
method ny3Qut coneMet hod has three possible outcomes, so it returns an | Ut i | Host ABC object.

value of the method:

nmy3Qut coneMet hod() . accept (new I UtilVisitorABC() {...})

Model-View-Controller Architecture

Suppose the

All we need to do is to delegate to the returned

A discussion of the details and implications of the Model-View-Controller Design Pattern are beyond the scope of this class, so here is but a brief

overview:

http://cnx.org/content/m26104/latest/

@b edu.rice.comp211.sudoku. controller. Controller

o GameFrame view

o GameModel model

@ © Contraller (int defaultCloseOp)
@ void start()

@ 5 void main(String[] args)

AN
AN

edu. rice. comp 21 1, sudoku, oul. IMadeldaan ter
void setOrder{int r)

void salve()

void load(File selectedrile)

String validateBoard ()

void reduceBoard()

String findMinChoiceCell()

void saveFile(File selectedFile)

[€] edu.rice. comp211.sudoku. model . GameModel
TviewAdapter view
int order

© edu.rice.comp211.sudoku. gui. GameFrame

o

h long serialVersionUID
o IModeladapter model
o JButton saveBtn

o JPanel controlPnl

o JTextField orderTF

o JButton solveBn _,_,.-‘-'-’?
o JButton loadBtn

o JButton findMinChoiceCellBtn
o JButton reduceBin

o JButton validateBtn

o JPanel displayPnl
o Ilabel orderLbl 0 o rice.comp 21 1. sudoku.model ienwAdapiefe |
®
)

oo 0000 0@
4]

Board currentBoard

ICellVisitor <Integer, Void > countCellChoicesVisitor
GameModel(int order, IViewAdapter view)

void setOrder (int order)

ICell filwithallvalues(ICell ¢, int order2)

Vector <String = readFile(File selectedFile)

void loadStrs(Vector <String > rowStrs)

void load(File selectedFile)

String validateBoard()

String validateCellSet(ICellSet cs, String prefixStr)
HashSet<Integer > getSolvedCellValues(ICellSet cs)
TUtiHostABCD reduceCellSet{ICelSet cs)
TUtiiHostABCD reduceBoard()

TUtiiHostABC solve()

ICell findMinChoiceCell()

int countCellSetChoices(ICellSet cs)

boolean solvelrreducibleBoard ()

void saveFile (File selectedFile)

int getRoot(int x)

o

C

£ F int BORDER_THICKMESS void setCellViews(Vector <ICellSet: vals)
© © GameFrame(int defaultCloseOp, IModelAdapter model) void showMessageDialog(String msg)

B void initGUI)

@ wvoid addCells(ICellview [cellviews)
@ void showMessageDialog(String msg)

IG edu.nice. comp.21 1. sudoku. qui. JCelView
I @ Component getComponent()

¢ E PS¢ O¢EEE®OE OB @ |

The point of the MVC is to separate how a program looks to the user from what it does. In the above UML diagram, you can see that we have two
separate packages: edu. rice.conp21l. sudoku. gui and edu. rice. conp21l. sukodu. nodel that hold the "view" and "model" components
respectively.

The view, GaneFr ame communicates with the rest of the system via its | Mbdel Adapt er which is also in the gui package. The | Cel | Vi ewis used to
communicate to the view, and so, it is also in the gui package. The gui package does not define what the | Model Adapt er does! But the GUI Fr ane
does not know this--so far as it can tell, it's entire world is defined by the gui package because there are no references to anything outside of the package.

Likewise, the model, GaneModel communicates with the outside world via its | Vi ewAdapt er. The model does use the code in the dat a and ut i |
packages, but only to define data structures and provide utility capabilities. All communications to the view take place through the | Vi ewAdapt er which
is in the nodel pacakge. Like the view, the model code has no idea what the implementation of | Vi ewAdapt er is.

The vi ewand nodel packages are thus completely isolated and independent from each other. The job of the Cont r ol | er class in the edu. ri ce.
conp211l. sudoku. control | er package is to assemble the complete, operational application by joining the vi ewand nodel together. It does so by
creating implementations of both | Mbdel Adapt er and | Vi ewAdapt er that pass their method calls onto the GaneFr ane and GaneModel

respectively. This may involve simply passing the call along to the appropriate method on the receiver, for instance, | Model Adapt er. sol ve() is
implemented to simply call GareModel . sol ve(). But other methods may require more extensive translation, for instance, | vi ewAdapt er .

set Cel | Vi ews() is implemented to take a Vect or <I Cel | Set > object, convert it into a 2-dimensional array of | Cel | | Vi ews and then make the call to
GaneFr ame. addCel | s() .

Thus, the Cont r ol | er is the class that contains the mai n() method that starts the application. The constructor of Cont r ol | er instantiates the model, C
ameMbdel , the view, GaneFr ame, and the adapters that communicate between them, | Vi ewAdapt er and | Model Adapt er. The method Control | er
.start () isthen called to actually start the application.
The Control | er is the only class that knows which view and which model are used for any given application.
Key Methods of GaneFr ane
® initGUJ -intializes the GUI components.
® addCel | s - displays the given cells on the screen. Used to update the view with the latest state of the board.
* showvessage - a utility method to display the given string as a pop-up dialog box.
Key Methods of | Model Adapt er
Most method are self-evident. See the Javadocs.
® val i dat e -- performs a validation of the board, returning a string that describes the current state of the board.

® findM nChoi ceCel | performs a search of the board to find the cell whose choices could be tested and that would lead to the fastest solution of
the board. The heuristic used to choose the cell is up to the student. The returned string is the t oSt ri ng() of the chosen cell.

Key Methods of GaneModel
There are a number of utility methods to perform useful self-evident tasks--see the Javadocs.

® current Board - a field which references the board that is currently being solved.
® | oadStrs -- takes a vector of strings, which are the rows of a puzzle, and translates the strings into the cells of a new current board. This
method is compatible with the puzzle generation utilities, but is not yet hooked up to them.
® val i dat eBoar d - performs a validation check on the current board and returns a string describing the current state of the board. This method
calls val i dat eCel | Set on every cell set of the rows, columns and blocks of the board. Examine this method carefully to get ideas on how to
process the board!
© Important Note: This method should NOT BE USED as part of the solving process!! It was designed to give textual feedback to the user
and not to be part of a solving algorithm. You will be marked down for using this method and attempting to parse it return string to
determine the state of the board. In fact, it is less effecient to separately check the validity of the board during the reduction and
solving process -- the board reduction algorithm (r educeBoar d()) should be able to determine the status of the board as a byproduct
of its actions, thus negating the need for a separate validation operation.
® get Sol vedCel | Val ues -- gets a HashSet <I nt eger > containing all the values from the solved cells in a cell set. This is used when reducing
acell.
® count Cel | Choi ces -- a utility method that will return the number of choices in all the unsolved cells in a given cell set
® reduceCel | Set -- [Student implemented] perform a single reduction pass on every cell in a given cell set.
O Start by having r educeBoar d simply call this method on a specific cell set.
® reduceBoard -- [Student implemented] perform a single reduction pass on every cell in the board.
® sol ve -- [Student implemented] perform reduction passes on the board until the board is either shown to be solved or unsolvable. This method
should be able to handle boards that are reducible, irreducible, or unsolvable.
© The method is defined as also allowing a return status of "irreducible”, though in the final implementation, that should never occur. This
return value is allowed so that you can do a partial implementation of the solve algorithm before you implement sol vel rr educi bl eBoa
rd.
® findM nChoi ceCel | --[Student implemented] Use some heuristic to find the best choice for a cell whose values represent the fastest path to a
solution. This method is used when an irreducible board is encountered and the solving process needs to iterate through the choices of a given
cell to test for possible solutions. If a board is solvable, on any cell, at least one value choice in an unsolved cell will always lead towards a
solution. Other choices may lead to unsolvable boards.
® sol vel rreduci bl eBoar d -- [Student implemented] Given an irreducible board (a board that doesn't change when a reduction pass is
performed), looks for a solution by testing the choices of a chosen cell. Note that a particular value choice in a cell could lead to an irreducible
board, so this is fundamentally a recursive process!

Key Methods of | Vi ewAdapt er

® set Cel | Vi ews -- takes a vector of cell sets that define the blocks of a puzzle (Boar d. bl ks) and displays the board on the screen.
®* showivessageD al og -- utility method to show a string on the screen as pop-up dialog box. This is useful for showing status results.

Testing the GameModel

For testing purposes, a GareMbdel can be instantiated using an implementation of | Vi ewAdapt er whose method a no-ops. The methods of the GaneM
odel can then be called.

® Test game files can be made to load the GameMbdel with well-defined boards for testing.

® CGaneMbddel can both save and load games at any stage of reduction, so well-defined testing scenarios can be created where the board is in an
exactly defined state, i.e. where every cell's value(s) are known precisely.

® The supplied code includes some examples of how you can instantiate a GameMbdel object, load puzzle boards with it and test it against
other boards.

Puzzle Generation Utilities

The supplied code also contains a self-contained package, edu. ri ce. conp211. sudoku. gener at e, that is used to read Sudoku puzzles from text files
containing a total of over 50,000 solvable puzzles. These puzzles come from www.printable-sudoku-puzzles.com but are a different format than the
Comp211 Sudoku solver uses. These utilities, which are all contained in the Gener at ePuzzl e class, can read those data files, pick either a specific
puzzle from them, or a random puzzle, display it and save the individual puzzle in a format that the Comp211 Sudoku solver can read.

Gener at ePuzzl eApp is a a simple GUI interface to Gener at ePuzz| e that allows the user to easily perform conversions. Note that the higher
numbered data files (located in dat a\ puzzl e- sr c) have more difficult puzzles. Each data file contains about 10,000 puzzles nhumbered from 1-10000
(approx.). An index of zero means to choose a random puzzle from the data file.

{[GeneratePuzzleApp}} has its own mai n() method and thus can be run as a separate, stand-alone application apart from the Sudoko solver.

See the Javadocs for more detailed information on the individual methods.

http://www.printable-sudoku-puzzles.com/wfiles/

@ﬁ_ edu.rice.comp211.sudoku.generate. GeneratePuzzleApp
ong serialVersion

el | ialVersionUID

o JPanel ctriPnl

o IScrolPane jScrolPanel G edu,rice.comp2 11, sudoku.generate. GeneratePuzzle

&' GeneratePuzzle OMLY
o Random rand

o JButton saveBin

g JButton generateBin
o JSpinner idxSpn

o JComboBox filesCBx
ITextArea displayTA
Vector <String > lines

B GeneratePuzzle)

@ Vector <5tring = loadFile(String filename)

@ Vector<String> generatePuzzle(int idx, Vector <String = lines)
@

@

String concatenateRows(Vector <String = rowStrs)
void saveFile{File selectedFile, String text)

GeneratePuzzle gen

5 void main(5tring[] args)
c GeneratePuzzieApp()
void start()
void initGUIY)
void loadFile(String filename)

EE$® @|o

	211hw11_details_S11

