
1.

2.
3.
4.

Habanero-Java
The Habanero Java (HJ) language under development at Rice University builds on past work on X10 v1.
5. HJ is intended for use in teaching Computer Science at the undergraduate level (COMP 322), as well
as to serve as a research testbed for new language, compiler, and runtime software technologies for
extreme scale systems. HJ proposes an execution model for multicore processors based on four
orthogonal dimensions for portable parallelism:

Lightweight dynamic task creation and termination using async, finish, future, forall, forasync,
ateach constructs.
Collective and point-to-point synchronization using phasers
Mutual exclusion and isolation using isolated
Locality control using hierarchical place trees

Since HJ is based on Java, the use of certain non-blocking primitives from the Java Concurrency Utilities
is also permitted in HJ programs, most notably operations on Java Concurrent Collections such as java.
util.concurrent.ConcurrentHashMap and on Java Atomic Variables.

A short summary of the HJ language is included below, and the following paper provides an overview of
the language:

 Habanero-Java: the New Adventures of Old X10. 9th International Conference on the Principles and
Practice of Programming in Java (PPPJ), August, 2011.

We also have a new library implementation of HJ called that can be used with any standard Java 8 HJ-lib
implementation. puts a particular emphasis on the usability and safety of parallel constructs. HJ-lib HJ-lib
is built using Java 8 closures and can run on any Java 8 JVM. Older JVMs can be targeted by relying on
external bytecode transformations tools for compatibility.

More details can be found in the papers in the Habanero publications web page.

A download of the HJ language implementation can be found here. The instructions for the
download and installation of the HJ-lib jar file is available .here

HJ Language Summary

(Following standard conventions for syntax specification, the [...] square brackets below refer to optional
clauses.)

async [(place)] at

 [[(ph <mode >, ...)]] phased 1 1

 [(condition)] seq

 [(ddf1, ...)] Stmt await

async — Asynchronously start a new child task to execute Stmt
at –- A destination place may optionally be specified for where the task should execute
phased — Task may optionally be phased on a specified subset of its parent’s phasers with
specified modes (e.g., phaser ph1 with mode1), or on the entire set of the parent's phasers and
modes (by default, if no subset is specified)
seq — A boolean condition may optionally be specified as a tuning parameter to determine if the
async should just be executed sequentially in the parent task. The clause can not be seq
combined with or clausesphased await
await — Task may optionally be delayed to only start after all specified events (data-driven
futures) become available

finish [(accum1, ...)] Stmt

Execute Stmt, but wait until all (transitively) spawned asyncs and futures in Stmt’s scope have
terminated
Propagate a multiset of all exceptions thrown by asyncs spawned within Stmt’s scope
Optionally, a set of accumulators (e.g., accum1) can be specified as being registered with this
finish scope

final future<T> f = <T> [(place)] async at

 [[(ph <mode >, ...)]] Stmt-Block-with-Returnphased 1 1

Asynchronously start a new child task to evaluate Stmt-Block-with-Return with optional and at ph
as in ased clauses async

f is a reference to object of type <T>, which is a container for the value to be computed by future
the future task; T may be a primitive type (including void) or an object type (class)
Stmt-Block-with-Return is a statement block that dynamically terminates with a return statement
as in a method body; a return statement is not needed if the return type is void

http://x10-lang.org/
https://wiki.rice.edu/confluence/display/PARPROG/COMP322
http://www.cs.rice.edu/~vsarkar/PDF/hj-pppj11.pdf
https://wiki.rice.edu/confluence/display/PARPROG/HJ+Library
https://wiki.rice.edu/confluence/display/PARPROG/HJ+Library
https://wiki.rice.edu/confluence/display/PARPROG/HJ+Library
https://wiki.rice.edu/confluence/display/HABANERO/Publications
https://wiki.rice.edu/confluence/display/PARPROG/HJDownload
https://wiki.rice.edu/confluence/display/PARPROG/Download+and+Set+Up

f.get()

Wait until future f has completed execution, and propagate its return value; if T = void, then f.
get() is evaluated as a statement (like a method call with a void return value)
get() also propagates any exception thrown by Stmt-Block-with-Return

point

A point is an n-dimensional tuple of int's
A point variable can hold values of different ranks e.g., point p; p = [1]; … p = [2,3]; …

for ([i1, …] : [, …]) Stmtpoint lo1:hi1

Execute multiple instances of Stmt sequentially in lexicographic order, one per iteration in
rectangular region [, …]lo1:hi1

forall ([i1, …] : [, …]) Stmtpoint lo1:hi1

Create multiple parallel instances of Stmt as child tasks, one per iteration in the forall
rectangular region [, …]lo1:hi1
An implicit finish is included for all iterations of the forall
Each instance has an anonymous pre-allocated phaser shared by all its iterations; no forall
explicit clause is permitted for a phased forall

forasync ([i1, …] : [, …]) [[(ph <mode >, ...)]] Stmtpoint lo1:hi1 phased 1 1

Like the , create multiple instances of Stmt as child tasks, one per iteration in the forall forasync
rectangular region [, …]lo1:hi1

There is no implicit finish in forasync
As with , a iteration may optionally be phased on a specified subset, (phasync forasync 1
<mode >, ...), of its parent’s phasers or on the entire set1

new phaser(mode)1

Allocate a with the specified mode, which can be one of SIG, WAIT, SIG_WAIT, SINGLEphaser
Scope of phaser is limited to immediately enclosing finish

next ;

Advance each that this task is registered on to its next phase, in accordance with this phaser
task’s registration mode
Wait on each that task is registered on with a wait capability (WAIT, SIG_WAIT, SINGLE)phaser

next single Stmt

Execute a single instance of Stmt during the phase transition performed by next
All tasks executing the statement must be registered with all its phasers in SINGLE next single
mode

signal ;

signal each that task is registered on with a signal capability (SIG, SIG_WAIT, SIGNAL)phaser
signal is a non-blocking operation --- computation between signal and next serves as a “split
phase barrier”

isolated Stmt

Execute Stmt in isolation (mutual exclusion) relative to all other instances of isolated statements
Stmt must not contain any parallel constructs
Weak atomicity: no guarantee of isolation with respect tonon-isolated statements

isolated [(obj1, ...)] Stmt

Object-based isolation — mutual exclusion is only guaranteed for a pair of isolated statements
with a non-empty intersection of their object sets
If no object set is specified, then the default set is the universe of all objects
A null value for an object is treated like an empty contribution to the set
Weak atomicity: no guarantee of isolation with respect to non-isolated statements

complex32, complex64

HJ includes complex as a primitive type e.g.,

complex32 cf = (1.0f, 2.0f); complex64 cd = (1.0, 2.0);

http://lo1hi1
http://lo1hi1
http://lo1hi1
http://lo1hi1
http://lo1hi1
http://lo1hi1

The following operations are supported on complex:

+,-,*,/, ==, !=, toString(), exp(), sin(), cos(), sqrt(), pow()

array views

T[.] declares a view on a 1-D Java array e.g.,

 double[.] view = new arrayView(baseArray, offset, [, …])lo1:hi1

 where

 baseArray = base 1-D Java array

 offset = starting offset in baseArray for view

 [, …] = rectangular region for viewlo1:hi1

abstract performance metrics

Programmer inserts calls of the form, perf.addLocalOps(N), in sequential code
HJ implementation computes total work and critical path length in units of programmer’s local
ops

http://lo1hi1
http://lo1hi1

	Habanero-Java

