
1.

2.
3.
4.
5.

Heterogeneous Habanero-C
The Hetrogeneous Habanero-C (H2C) language under development in the project at Rice Habanero
University provides an implementation of the execution model for modern heterogeneous Habanero
(CPU + GPU) architectures.

Overview
H2C Language Summary

Communication Constructs
Computation Constructs
Synchronization Constructs

H2C Compiler and Runtime Framework
Two Phase Compilation
Runtime

Example H2C program

Overview

The Heterogeneous Habanero-C (H2C) , and framework is specifically language compiler runtime
designed to achieve , and on modern heterogeneous (CPU+ portability productivity performance
GPU) architectures. The main goal is to take a machine independent program written in H2C and
generate a machine specific executable.

Some highlights of H2C include:

Minimal, intuitive, language extensions makes it easier to write new programs and port existing
programs.
Two stages compilation targets both domain experts and ninja parallel programmers.
Shared Virtual Memory (SVM) supports recursive pointer data structures on the GPU.
Meta Data layout framework generates target specific data layout.
Embedded DSLs for stencils and re-use patterns take advantage of local scratchpad buffers.

H2C requires the underlying platform to support . The H2C compiler relies on a achine criptiOpenCL M Des
on (MDes) file. It can be provided by the user or automatically generated by an auto-tuner. H2C uses an o

model wherein the CPU is the host and both CPUs and GPUs are devices.ffload

A short summary of the H2C framework is included below. Details on the underlying implementation
technologies can be found in the Habanero web page. The H2C implementation is still publications
evolving. If you would like to try out H2C, please contact one of the following people: , or Deepak Majeti Vi

.vek Sarkar

H2C Language Summary

 The language constructs are classified into communication, computation and synchronization constructs.

Communication Constructs

The construct, is used to asynchronously transfer data among multiple devices. One can easily async
overlap computation with the asynchronous data transfers.

The statement, , ensures all the data transfers within have completed.finish finish <stmt> <stmt>

 async [copyin (var1, var2, ...)] [copyout (var1, var2, ...)] [at (dev1, dev2, ...)] [partiti
on (ratio)];

'copyin' clause is used to specify the data that needs to be copied to
the device from the host

'copyout' clause is used to specify the data that needs to be copied
to the host from the device

'at' clause is used to specify the targeted devices

'partition' clause is used to specify the ratio of partition

Computation Constructs

The construct is a data/task parallel loop. It is the programmer's responsibility to ensure that forasync
loop iterations are independent.

http://habanero.rice.edu/
http://habanero.rice.edu/
https://wiki.rice.edu/confluence/www.
http://habanero.rice.edu/Publications.html
mailto:Deepak.Majeti@rice.edu?subject=H2C%20release
http://www.cs.rice.edu/%7Evsarkar
http://www.cs.rice.edu/%7Evsarkar

 forasync [in (var1, var2, ...)] [point (ind1, ind2, ...)] [range (siz1, siz2, ...)] [seq (se
Body}q1, seq2, ...)] [[scratchpad (var1, var2, ...)] at (dev1, dev2, ...)] [partition (ratio)]{

'point' clause is used to specify the loop indices in each dimension

'range' clause is used to specify the number of iterations in each
dimension

'seq' clause is used to specify the tile size or the work-group size

Body represents the loop iteration

Synchronization Constructs

The construct ensures all the tasks spawned inside it are completed.finish

H2C Compiler and Runtime Framework

Two Phase Compilation

In the first phase, the H2C compiler translates a H2C program down to a C program, OpenCL kernel and
the corresponding host program. Parallelism experts can optionally choose to add optimized OpenCL
kernels. The compiler uses a achine cription(MDes) file to generate a target specific OpenCL M Des
kernel and communication. The MDes file can either be specified by the programmer or automatically
generated by an auto-tuner.

In the second phase, a standard C compiler is used to build an executable from the generated
intermediate files along with the H2C runtime and OpenCL runtime.

Runtime

The H2C runtime includes a memory manger, scheduler and interfaces with the OpenCL runtime.

Example H2C program

1.
2.
3.
4.

5.

Matrix Multiply in H2C

finish{
 async copyin(a,b) at(dev);
 foo(); //asynchronously copy data while executing foo
}
finish{
 forasync in(a,b,c,m,n,p) point(i,j) range(0:m,0:n) seq(4,128) shared(a,
b) at(dev){
 float temp =0;
 for(int k=0;k<p;k++){
 temp += a[i*p+k]*b[k*n+j];
 }
 c[i*n+j] =temp;
 }
}
finish{
 async copyout(c) at(dev);
 bar(); //asynchronously copy data while executing bar
}

Current H2C limitations
There are some limitations and pitfalls in the current implementation of the H2C programming model.
These limitations are not inherent to the programming model, but rather are a result of incompleteness in
the current compiler or runtime implementation.

1) The forasync construct cannot be nested in the current implementation.

2) There is no compiler check for correctness on the forasync body. Any code pattern not supported on
the target device will result in runtime errors.

3) Pointer arithmetic on arrays which are communicated between CPU and GPU is not supported.

Installation

H2C Branch: https://svn.rice.edu/r/parsoft/src/Habanero-C/branches/hcConcordBranch
Dependencies:
Rose Version: ROSE 0.9.5a: orion.cs.rice. edu:/home/vc8/habanero-git-repo/hc/ROSE.git
EDG with H2C keywords: orion.cs.rice. edu:/home/vc8/habanero-git-repo/hc/ROSE-EDG.git
branch.dm14-hc-forasync.remote=origin
branch.dm14-hc-forasync.merge=refs/heads/dm14-hc-forasync
Boost Version: boost_1_38_0
Polyopt 0.2.1: http://web.cs.ucla.edu/~pouchet/software/polyopt/

Steps:

Build boost_1_38_0
Build Rose 0.9.5a
Build Polyopt
run script located in H2C branch. This script copies the necessary files from the h2cpolyopt.sh
polyhedral installation
Build using the makefile provided H2C branch

Acknowledgement

Partial support for Heterogeneous Habanero-C was provided through the CDSC program of the National
Science Foundation with an award in the 2009 Expedition in Computing Program.

https://svn.rice.edu/r/parsoft/src/Habanero-C/branches/hcConcordBranch
http://edu/home/vc8/habanero-git-repo/hc/ROSE-EDG.git
http://edu/home/vc8/habanero-git-repo/hc/ROSE-EDG.git
http://web.cs.ucla.edu/~pouchet/software/polyopt/
http://www.nsf.gov/
http://www.nsf.gov/

	Heterogeneous Habanero-C

