COMP620: Graduate Seminar in Distributed Computing - Big Data and Analytics Systems

Course Information (Spring 2015)

Instructor:	Prof. Faye Briggs, DH 2062	Graduate TA:	Deepak Majeti, DH 2069
Lectures:	Keck 107	Lecture times:	Fri 11:00 am - 11:50 am

Lecture Slides and Notes

	Lecture Name		Slides	Notes
1	Introduction to the course	1/17/2015	PPT	
2	Course outline and student presentation assignment	1/23/2015	PPT	
3	Big Data: Applications & Platform Architectures	1/30/2015	PPT	
4	Big Data and Analytics Systems: Computer System Architecture	2/6/2015	PPT	
5	More Applications of Big Data	4/24/2015		

Schedule for Student Presentations

Note: The slides and related material for each topic will be provided. Hence, do not hesitate about the workload if you like a topic not in your domain.

	Topic	Student Name	Date	Presentation
1	Distributed file systems and map-reduce as a tool for creating parallel algorithms that succeed on very large amounts of data	Yiting Xia	2/13 /2015	PPT
2	Similarity search, including the key techniques of min-hashing and locality sensitive hashing	Deepak Majeti	2/20 /2015	PDF
3	Data-stream processing and specialized algorithms for dealing with data that arrives so fast it must be processed immediately or lost	Wei-Cheng Xiao	2/27 /2015	PPTX
4	Anomaly Detection Frequent itemset mining, including association rules, market baskets, the A Priori Algorithm and its improvements	Deepak Majeti	3/13 /2015	PPT
5	The technology of search engines, including Google's Page Rank, link-spam detection, and the hubs-and-authorities approach	Omid Pouya	3/20 /2015	PPT1, PPT2
6	Algorithms for clustering very large, high-dimensional datasets	Simbarashe Dzinamarira	3/27 /2015	
7	Two key problems for Web applications: managing advertising and recommendation systems	Lei Tang	4/10 /2015	
8	Algorithms for analyzing and mining the structure of very large graphs, especially social-network graphs	Shangyu Luo	4/17 /2015	
	Techniques for obtaining the important properties of a large dataset by dimensionality reduction, including singular value decomposition	Zhipeng Wang	4/24 /2015	
	and latent semantic indexing			

Machine learning algorithms that can be applied to very large data, such	-
as perceptrons, support vector machines, and gradient descent	

Zhipeng Wang

4/30 /2015

Resources

Text Book: Mining of Massive Datasets, Jure Leskovec, Anand Rajaraman, Jeffrey D. Ullman

Systems Architecture for Big Data and Analytics: A Big Data Architecture for Large Scale Security Monitoring, by Samuel Marchal, Xiuyan Jiang, Radu State, Thomas Engel

Databases & Tools: Hadoop & HDFS, Hive, SPARK, Map-Reduce Google Big Table & GoogleFS, Google Cluster Experiences with MapReduce

Programming Approaches to Big Data Analytics: OpenMP, MPI, etc

Analytics Algorithms and Applications:

GraphX: Unifying Table and Graph Analytics, Joseph Gonzalez

Analytics for all: Challenges in analytics applications

Machine Learning Review: Machine Learning Foundation, By Jason Brownlee

Modeling and Detection Techniques for Counter-Terror Social Network Analysis and Intent Recognition, by Clifford Weinstein, William Campbell, Brian Delaney, Gerald O'Leary

Visualization Tools:

Cell Phone Mini Challenge Award: Intuitive Social Network Graphs Visual Analytics of Cell Phone Data using MobiVis and OntoVis, by Carlos D. Correa Tarik Crnovrsanin Christopher Muelder Zeqian Shen Ryan Armstrong James Shearer Kwan-Liu Ma