
211hw10
Homework 10: SimLaundry 2010
Due Friday, 9 April 2010 at 11:00 A.M.

Preface
This assignment has a long description but the coding involved is straightforward. Most of the code for the full application has been written as support code
by the course staff. In our solution, the remaining code that you must write (excluding test code) consists of approximately 250 lines (including comments
and whitespace lines).

Overview
Rice student J. H. Acker has decided to drop out of school and become a high-tech billionaire by marketing a virtual reality game based on Acker's own
personal hygiene. The game is called SimLaundry 2010, and it models the laundry habits of a typical college student. In this assignment, you will help
Acker create this game, in return for a cut of the profits and a good Comp 211 grade.

We will assume there are only three types of clothing: shirts, pants, and socks. (We will all enjoy this assignment a lot more if we don't have to think about
Acker's underwear.) Acker neatly stacks clean shirts, pants, and socks in piles on a shelf in his closet.separate

When changing clothing, Acker throws dirty clothing onto a pile in the corner of the closet, then selects the top clean item of a particular type from the
closet shelf; the resulting outfits rarely coordinate, but Acker is no slave to fashion. If there are no clean clothes of a particular variety, Acker resorts to
using dirty laundry and removes the recently worn article of that type from dirty laundry pile, smells it, and always decides it can be worn again after least
all. (Acker never has to go naked, because there is at least one item of the desired type in the laundry, namely the one Acker just removed.)

When doing laundry, Acker removes (or fewer, if the pile isn't that large) items from the top of the dirty clothes pile. In the simulation, a load of fifteen
clothes is laundered and dried instantaneously and placed on a table for clean clothes reserved for Acker in the laundry room. Acker changes clothes so
infrequently that the washing and drying time is negligible, so our simulation is a good approximation. The garments in each load of clean clothes are piled
in exactly the same order they appeared in the dirty pile. Acker fills the washer and dryer so full that the clothing doesn't get jumbled up.

Eventually Acker retrieves the oldest clean laundry load, folds it, and places it on the closet shelf. In the process, he reverses the order of the clothing
within the load; whatever was on the bottom of the pile on the laundry table is now on top of the appropriate pile (shirts, pants, or socks) of clean clothes
on the shelf. Hence, if a blue shirt was on top of a white one in the dirty clothes pile and they are washed in the same load, then the white shirt will be on
top of the blue one on the closet shelf.

Acker periodically receives gifts of clothing from relatives, which are placed on top of the appropriate pile on the closet shelf. He buys any clothes.never

Acker never discards clothing, no matter how threadbare, but does, on rare occasions, lose some. Not only does Acker lose clothes being worn, but they
can be lost from anywhere else, including the closet shelf, the dirty laundry pile, and the laundry room.

For the purposes of this assignment, a pair of socks is an indivisible article of clothing; we make the unrealistic assumptions that single socks are never
lost and that Acker does not wear mismatched socks. Also, you needn't be any more concerned than Acker is about separating white and dark laundry or
other such niceties.

What You Must Do
The course staff is providing a framework for writing this program that includes many classes and interfaces. The framework is packaged as a zipped
DrJava . This file will unzip into a self-contained file tree with root directory . This directory contains the source tree for the project laundry.zip laundry
laundry framework with root directory , a DrJava project file and two text files and used by the sample edu laundry.drjava sampleIn sampleOut
laundry test class . Given the text input in , your program should generate the text in edu.rice.comp211.laundry.tests.LaundryTest sampleIn sa

. The provided framework compiles but will fail because most of the members in the key class have been mpleOut LaundryTest DoCommandVisitor
stubbed out.

After unzipping the file, you can open the DrJava laundry project by starting DrJava, setting the to , laundry.zip Language Level Full Java pulling
. In the file chooser that pops up, select the project profile file down the menu and selecting the commandProject Open laundry.drjava

embedded in the file in the unzipped file tree for . You can save the project state at any point during a DrJava session using the laundry.zip Save
command in the menu. You can also save individual files within the project using the button on command file or the menu.Project Save File

The commands runs all of the JUnit test files in the project.Test Project

Your assignment is to fill in the stubbed out members of the (members with degenerate bodies (either or). DoCommandVisitor return; return null;
In the process you may choose to define some new classes to support your class implementation. The class which DoCommandVisitor Student
repeatedly invokes models the laundry habits of Acker. In our test simulations, we will typically only create a single instance of DoCommandVisitor Stude

 representing Acker, but your code should support multiple students (e.g., Acker and his brothers) at a time. Since these students do not interact with nt
each other, supporting this form of multiplicity is a trivial consequence of OO coding style used in the framework.

The class includes:Student

the name of the student,
the closet shelf with its piles of clean clothes,

https://wiki.rice.edu/confluence/download/attachments/2761190/laundry.zip?version=5&modificationDate=1270838901782&api=v2

the dirty laundry pile, and
the laundry room with its piles of laundered garmets sitting on tables.
and methods to manipulate those data representations to perform the specified simulation

When the simulation begins, Acker is wearing pants, socks, and a shirt. The closet shelf, dirty laundry pile, and laundry facilities are all white white white
initially empty. The program starts execution using the special method in class . The public static void main(String[] args) Main main
method interface is the only vehicle for executing Java programs directly from the command line. (DrJava has a method for this reason.)main

Your solution will be graded using the textual interface. Graphical interfaces are notoriously difficult to test and all of the graphical interface code is part of
our support code anyway. Your correctness and testing scores (which each count 25% of your grade) will be based on how well your implementation of
each command complies with the given specifications and on how well you demonstrate this compliance with test cases. You can test your
DoCommandVisitor using the same approach given in our class. These tests use the method in to drive the LaundryTest.java simulate Student
execution of . If you write some utility methods fopr you should separately test these methods. You are NOT responsible DoCommandVisitor BiLists
for testing any of our support code in including the class.laundry.zip BiList

A major portion of your grade (35%) will be based on your program style. If you write your code in the OO style practiced in this course, you should do very
well on this aspect of the assignment. The remaining 15% of your grade is based on your documentation, particularly your comments for classes javadoc
and methods.

Form of Event Commands
Your program executes a loop that repeatedly reads input from an input "process" that returns objects. The input process (provided by our Command
supporting framework) reads a series of event description commands, one to a line, either from the console or from a file. The input process converts a
stream of characters to objects which are passed to your program.Command

In addition to performing the specified command, your program should output a brief description of for each command that it performs in the exact format
. In the following list of commands, the line specifies what your program should print.described below output

The command

receive <adjective> <article>

means Acker received a gift of the specified article (<adjective> <article>) of clothing. In response, the simulation outputs

received <adjective> <article>

and updates the state of the . For example,StudentEnvironment

receive argyle socks

generates

received argyle socks

and adds the to the top of the pile on the shelf. argyle socks socks

The command

lose <adjective> <article>

means Acker misplaced the specified article of clothing. If the item exists and Acker is not wearing it, the simulation outputs

lost <adjective> <article>

and updates the state of the accordingly. If Acker is wearing it, the simulation outputsStudentEnvironment

Acker is wearing <adjective> <article>

and leaves the unchanged. If the item , the simulation outputsStudentEnvironment does not exist

<adjective> <article> does not exist

and leaves the unchanged. StudentEnvironment

The command

change <article>

means Acker doffed the specified article of clothing, discarding it in the dirty laundry pile, and donned a replacement article using the protocol
described above. In response, the simulation outputs

doffed <adjective> <article>, donned <adjective> <article>

describing the article doffed and the article donned.

The command

{{launder}}

means Acker washed and dried a load of laundry. If the dirty clothes pile is not empty, the simulation outputs

washed <adjective> <article>, ..., <adjective> <article>

listing the clothes in the order they were removed from the dirty clothes pile. If the dirty clothes pile is empty, the simulation outputs

nothing to wash

The command

fold

means Acker retrieved a load of laundry, folded it, and put it on the closet shelf. If a load of laundry is available, the simulation outputs

folded <adjective> <article>, ..., <adjective> <article>

for the oldest unfolded load. List the clothes in the order they are placed on the shelf. Hence the top garment on the shelf should be the last one
listed. If no load of laundry has been washed and dried, then the simulation outputs

nothing to fold

If the oldest load is empty (because all items in it were lost), the simulation outputs

folded empty load

The command

outfit

asks "what is Acker wearing?" The simulation outputs

wearing <adjective> <shirt>, <adjective> pants, <adjective> socks

Supporting Code and Programming Details
Our supporting framework is provided in the zip file . The test input in the file (with corresponding output) is far from laundry.zip sampleIn sampleOut
comprehensive.

All of our supporting code is included in the unzipped project. Each file resides in a package that is identified by a statement at the beginning of package
the file. Most support classes are so that they can be accessed anywhere. Classes without a visibility modifier have "default" visibility, which public
means that they can only be accessed from classes within the same package.

Our supporting framework includes an input processor that reads event commands from the input stream and returns high level data representations for
these commands. The input processor can also print debugging output describing the state of your simulation before each command is performed. To
communicate with your code, the input processor uses four interfaces:

IOProcess which describes the visible methods supported by the input processor;

StudentEnvironment which describes methods for inspecting the state of Acker's environment;

EnumI which describes methods for inspecting (but not mutating!) lists within Acker's environment; and

ReadIteratorI which includes methods for moving a cursor through lists implementing the interface.EnumI

The interfaces are already defined in the framework provided by the course staff.

The input processor class implements the interface. You are welcome to inspect the code of but it relies heavily TerminalIO IOProcess TerminalIO
on the Java I/O library, particularly the class . To understand this code, you will need to read Chapter 11 of JLS (or similar reference). StreamTokenizer
The framework also includes implementations of and as part of a (mutable circular doubly linked list) class EnumI ReadIteratorI BiList
implementation.

The class implements the interface, which includes the method supporting the laundry simulation. The Student StudentEnvironment simulate
simulate method contains a loop that reads commands from its and invokes on each command. Within the IOProcess DoCommandVisitor DoCommandV

 class you must implement methods that process the various possible commands.istor

The program includes two class definitions defining unions (composites without recursion): , specifying the representation of garments that Garment
appear in the input stream, and , specifying the representation of event description commands. Both classes include the hooks required to Command
support the visitor pattern. The data definition for is important because the graphical version of the user interface included in the framework Garment
animates the state of your implementation before each command. This graphical user interface (GUI) expects the garments that appear as elements in
lists (as revealed by the and interfaces) to be instances of the class. Hence, you must use the representation of EnumI ReadIteratorI Garment
garments that our class provides.Garment

The file contains comments describing all of the members that you need to write. This class could have been defined as an DoCommandVisitor.java
inner class of but we made it a top level class to simplify debugging.Student

The interface includes a method which initializes an IOProcess PrintStream open(StudentEnvironment a, boolean debug) IOProcess
object for a laundry simulation of the specified environment and returns the object to be used for terminal output. (Up to now you have PrintStream
implicitly used the object .) The method prints the string followed by a newline PrintStream System.out PrintStream println(String s) s
character to the . The argument indicates whether or not debugging output should be produced. The PrintStream boolean debug IOProcess
interface also includes a method which reads the next command from the input channel supported by the object.nextCommand IOProcess

Each call on returns the next command in the stream provided by the object, until it reaches an end-of-file (nextCommand IOProcess <control>-d
from the keyboard). End-of-file is reported as a null reference of type .Command

The method in processes character strings consisting of words separated by ``space'' characters such as and . A nextCommand TerminalIO ' ' '\n' w
 is any sequence of printable characters other than space, (newline), and . (return). An must be a single word. An ord '\n' '\r' adjective article

must be one the words , , or . The same adjective, say may be applied to garments of different types, but there are no shirt pants socks argyle
duplicate items of clothing.

The program passes a boolean debug to (). The value of the flag is true iff the command line argument or is passed to flag TerminalIO -d -debug main
.

The Graphical User Interface (GUI)

https://wiki.rice.edu/confluence/download/attachments/2761190/laundry.zip?version=5&modificationDate=1270838901782&api=v2

The initialization of the GUI creates an Acker Student object and associated DoCommandVisitor. Each GUI event triggers the execution of
DoCommandVisitor; in some cases, such as reading input from a file, it triggers the execution of DoCommandVisitor on a stream of Commands. In
essence, the event-handling loop built-in to the Java Swing framework is used to drive the computation rather than a separate loop in the main thread such
as the one in the simulate method in Student.

The GUI could also have been written as an implementation of the IOProcess interface. This approach, which conforms to the classic "model-view-
controller" (MVC) pattern, is more flexible because it decouples the GUI (the view in MVC terminology) from the model, but it is also more complex
because it involves the cooperative execution of
two loops in separate threads--a main program loop in the simulate method of Student and the loop driving the event-handling thread supporting the
processing of GUI inputs. The SimLaundryApplication dispenses with the main program loop by absorbing the application (the model) into the GUI (the
view).

Efficiency
For this assignment, you should be concerned about relevant asymptotic efficiency. Choose the simplest representation that yields good performance on
inputs of plausible size.

Changing an article of clothing should take constant time (, no searching should be done) provided there's an appropriate garment on the shelf. If the i.e.
shelf contains no clothing of that type, then in the common case we expect to find one of those near the bottom of the pile, no matter how big the pile is:
make that case fast. Infrequent operations need not be particularly fast, because they have little impact on the running time of the entire system. (Suppose
one operation accounts for 5% of the running time, and we can make it run 10 times as fast. How does that compare to making an operation that accounts
for 25% of the running time twice as fast?)

Example
With Acker initially wearing white shirt, socks, and pants, given the input:

receive blue socks
receive green pants
receive red shirt
change socks
receive yellow shirt
change shirt
outfit
change socks
launder
change pants
fold
change socks

your program should produce:

received blue socks
received green pants
received red shirt
doffed white socks, donned blue socks
received yellow shirt
doffed white shirt, donned yellow shirt
wearing yellow shirt, white pants, blue socks
doffed blue socks, donned white socks
washed blue socks, white shirt
doffed white pants, donned green pants
folded blue socks, white shirt
doffed white socks, donned blue socks

The sample input and output files and are a good starting point for testing your program but they are far from exhaustive.tinyin tinyout

You are responsible for testing your own program. Since your class containing is called , you can enter the main edu.rice.comp211.laundry.Main
line

java edu.rice.comp211.laundry.Main -t <infile>

in the DrJava Interactions Pane to run the program on input from file . Output will be displayed in the DrJava console. If you simply hit the <infile> Run
 button, this action is equivalent to entering the lineProject

java edu.rice.comp211.laundry.Main

which runs the program with terminal input as the input file. In this case, the program will prompt you for the input of each command in a box within the
Interactions Pane.

You can also run the program from the command line (a terminal) in the directory of the program file tree.laundry
The input line

java edu.rice.comp211.laundry.Main -t <infile>

should produce exactly the same results as executing the same line in the DrJava Interactions Pane. You can redirect the output to a the file <outfile>
by typing

java edu.rice.comp211.laundry.Main -t <infile> > <outfile>

DrJava does not support output redirection but you can copy the text printed in the console and paste it into a file using your editor of choice.

	211hw10

