
211hw2
Homework 2 (Due Friday 1/29/10 at 10:00 am)
Submit via OWLSPACE in a single file that is runnable in DrScheme (so all expository answers must be enclosed in comment blocks or commented out
using semi-colons.s into one file and submit this one compressed file.

The type "natural number" () in this assignment means the type defined in the text in Section 11.1. Your file should include a data N natural-number
definition for . Unless the problem statement stipulates otherwise, the built-in operations you may use with values of this type or variants (such as N only na

) are the constructors, accessors, and recognizers for the type and the (or }) operation. For , the constructor is ; the accessor tural>=1 equal? = N add1
is , and the recognizers are and .sub1 zero? positive?
For variants, the constructor is typically (unless the variant consists of multiples of [such as the even numbers]), the accessor is typically , add1 m>1 sub1
and the recognizers are typically , where is the base number, and .(equal? ... k) k (> ... k)

Problems from the book (HTDP) with some customization

11.2.4 (20 pts)
Copy the definition of from the text. Be sure to provide your own function template for and to write template deep-list deep-list
instantiations for and .depth make-deep

11.4.7 (20 pts)
Include a data definition (following the text) of . In addition to the constructors, accessor, recognizers, and , you natural>=1 equal?
may use the library functions and . Hint: define an auxiliary function of two inputs and (using the remainder * is-divisible-by p q r

 library function) that determines if is divisible by (, p/q is a whole number).emainder p q i.e.
Note that the problem as stated in the book has TWO parts; the second, writing is easy after doing the first. Do not worry about prime?
optimizing the search for a divisor for n by bounding the search to numbers less or equal to ; for simplicity, the (integer-sqrt n) inte

 and library functions are forbidden in this exercise.ger-sqrt sqrt
12.2.2 (20 pts)
12.4.2 (30 pts)

Do this problem followed by developing the function that returns a list containing all of the arrangements (permutations) arrangements
of the input word. This function is described in detail in the text and the code for it is in problem 12.4.1, but present this given to you
answer in your program file as if you developed it, including supporting test data.
The for this problem should also state thatHint

(insert-everywhere/in-all-words 'd (list (list 'e 'r) (list 'r 'e))) =
 (list (list 'd 'e 'r) (list 'e 'd 'r) (list 'e 'r 'd) (list 'd 'r 'e) (list 'r 'd 'e) (list 'r
'e 'd))

Notes: the function computes all of the of the input word. Permutation is an important concept in basic arrangements permutations
probability theory. For some reason, the authors of the book chose to avoid using the relevant mathematical terminology. This problem
includes writing the function because it is cool and developing is the bulk of arrangements insert-everywhere/in-all-words
the work involved in developing .arrangements

13.0.5 (part 4 only) (5 pts)
13.0.8 (part 2 only) (5 pts)

	211hw2

