
1.

2.

3.

4.

5.

HW2
Homework 2
Due: 11:59pm, Wednesday, Sep 16, 2020

100 points

For all Racket assignments in this course, set the DrRacket Language to (under). Your assignment Advanced Student How to Design Programs
will be graded using the specified language level. If you use a different language level, your code may not work when it is graded.

Carefully follow the in the Racket . Only half of the credit for each programming Sample Solution to a Programming Problem HW Guide
problem is based on the the correctness of your code as determined by our test cases. Much of the grade is based on how well you follow the desi

.gn recipe
Check out (and SVN command) the file HW02.rkt from the Rice SVN repository and use as a stub for writing your svn.rice.edu/r/comp311/courses/
solution the problems below.
Use the Racket language called because it supports tracing and provides better diagnostics. Beware of Intermediate student with lambda
typos such as mistyping the name of a function (, instead of) or improperly matched parentheses.e.g. empty empty?

Do the following programming problems:
[3] Section 14.2 in the HTDP First Edition book describes what it calls Binary Search Trees. The terminology in this section of the 0 pts
book is non-standard because the Binary Search Trees contain both keys and values in each node and hence represents a finite
mapping from keys to nodes. The stub file contains describes a simple Racket programming problem (with a solution consisting of only
a few lines of executable Racket code) based on essentially the same inductive data definition as Binary Search Trees but the type of
the field is parametric () which must be instantiated to to match the explication of Binary Search Trees in the value alpha symbol
book. Your task is to

Give some examples of the type.symbol-BSTM
Devise a set of test cases (input output pairs expressed using check-expect) for the function.getBSTM
Write a Template Instantiation for (based on the general template for functions that process s)getBSTM symbol-BSTM
Develop the code for the function that satisfies the contract given in the stub file.getBSTM
Briefly compare the asymptotic worst case running time of searching a that is well balanced (maximum depth is symbol-BSTM
proportional to the log N where N is the number of keys in the) and function searches an ordered list of symbol-BSTM (key

 pairs represented as two element s (as in Problem 2 below).value) list

Each of these five subtasks, except for devising the collection of test cases, takes only a few lines. A good set of test cases might take
as many as 10 lines.

[] The stub file HW02.rkt provides a detailed description of how to develop the function (and supporting function 30 pts cross cross-
) that consumes a and a and produces a where a help number-list symbol-list number-symbol-pair-list number-

 is represented by a two element containing a and a .symbol-pair list number symbol

evelop the function (and supporting function [30 pts] The stub file HW02.rkt provides a detailed description of how to d merge merge-
) that consumes two ascending (} s and merges them to form an ascending help technically non-descending number-list number-
.list

[] The ubiquitous Fibonacci function defined by the trivial program given in the stub tile HW02.rkt is interminably slow 10pts fib
(exponential running time) for large inputs. Develop a Racket function that consumes a natural number input , produces the fastFib n
same answer as the function defined in the stub file, and runs in linear time (assuming that the primitive addition operation runs in fib
constant time, which fails for very large). Hint: write a help function that accumulates the result in an accumulator n fastFibHelp
argument performing essentially the same computation as an imperative program relying on a loop that maintains and fib(k-1) fib

 in mutable variables as increases from to n. The poor efficiency the trivial functional program for is due to the fact that it (k-2) k 2 fib
repeatedly computes the Fibonacci function for small exponentially many times.k

Show Type Contracts, Purpose Statements, Examples, and Template Instantiations for and . (The fastFibHelp fastFib
answers for the Template Instantiations can vary; only the salient features (primarily recursive calls) are matter.)
As usual testing comes for free given that you provided input-output examples. Make sure that after you run your program that
no source code text (definitions of and is shaded in the DrRacket definitions panel. Such shading fastFib)fastFibHelp
indicates a failure to evaluate the shaded expressions in any test cases.

Optional problem for extra credit: [50 pts]
The Fibonacci function is defined in the stub for Problem 4 in HW02.rkt. The naive program for computing coded in the file fib fib
HW02.rkt runs in exponential time, the running time for is proportional to C for some constant It is straightforward i.e. (fib n) *2^n C.
to write a program that computes in time proportional to as assigned in Problem 4. Your challenge is to write a program that (fib n) n
computes in time assuming that all multiplications and additions take constant time (which is unrealistic for large . (fib n) nlog n)
More precisely, your program should compute using only addition and multiplication operations (less than C(fib n) O(log n) *log n
 operations for some constant).C

Hints:
 Derive a recurrence for in terms of and . Derive a similar recurrence for . To fib(2*m) fib(m) fib(m-1) fib(2*m+1)
produce an algorithm that runs in log operations you need to reduce computing the pair to (fib(2*m),fib(2*m-1))
computing using a bounded number of arithmetic operations and tests. (fib(m),fib(m-1))
Initially write a program that works when n is a power of 2. Then refine this prototype to a program that works for all n.
This is a challenging problem. Make sure that you have thoroughly completed the regular homework problems before
attempting it.

https://wiki.rice.edu/confluence/display/FPSCALA/Racket+HW+Guide
https://wiki.rice.edu/confluence/display/cswiki/211Guidelines
http://svn.rice.edu/r/comp311/courses/hw2.1.rkt
#
#
#
#
#

In my solution, I used "dotted pairs" to reduce overhead. The "dotted pair" representation of a pair (a,b) is (cons a b) which is
illegal in all of the HTDP dialects when b is not a list, It is supported in the "other language" called "Pretty Big". Of course you
can define pairs using . My intuition was that such pairs have more overhead than (define-struct pair (left right))
dotted pairs but I did not perform any benchmark comparisons. If you decide to use a language other than Intermediate

, please put your solution to the challenge problem in a separate file called Chal02.txt and put a comment student with lambda
in your regular solution file HW02.rkt for problem 5 to that effect.

	HW2

