
1.

2.

3.

4.

5.

6.

7.

1.
2.

3.

HW1
Homework 1
Due: 11:59pm, Thursday, Sep 08, 2022

100 points

For all Racket assignments in this course, set the DrRacket Language to (under). Your Intermediate Student with lambda How to Design Programs
assignment will be graded using the specified language level. If you use a different language level, your code may not work when it is graded.

Carefully follow the in the Sample Solution to a Programming Problem Racket HW Guide. Only half of the credit for each programming
problem is based on the the correctness of your code as determined by our test cases. Much of the grade is based on how well you follow the desi

 For a crisp example of what an ideal solution looks like look at the that sorts .gn recipe Sample Solution to a Programming Problem list-of-
 at the end of in the the . This process may appear painful but it number Sample Solution to a Programming Problem Racket HW Guide

shows "in the small" how program design should be done "in the large". It is not difficult. If you carefully inspect the sample program, it shows
the level of detail in describing your program design (and its derivation!) that we want.

Do the following programming problems:
[] Develop the function 10 pts contains? that consumes a symbol and a list of symbols and determines whether or not the symbol
occurs in the list.

Develop the function [10 pts] count-symbols that consumes a list of symbols and produces the number of items in the list. [Note: the
function merely works on inputs that are lists of symbols; it may blow up on anything else].

Develop the function [10 pts] count-numbers that counts how many numbers are in a list of numbers. [Note: the function merely
works on inputs that are lists of numbers; it may blow up on anything else].

Develop the function [20 pts] avg-price. It consumes a list of toy prices and computes the average price of a toy. The average is the
total of all prices divided by the number of toys. [Hint: develop a few auxiliary functions (following the design toy prices are numbers.
recipe to develop each auxiliary function) that you can use to make the definition of average-price very easy. If the list of toy prices is
empty, the function avg-price produces an error message as described in Guidance below.
[] Develop the function to eliminate expensive toys. The function consumes a number, called (short for "maximum 10pts elim-exp mp
price") and a list of toy prices, called , and produces a list of all those prices in that are below or equal to . For examplelotp lotp mp

(check-expect (() ()) = #trueelim-exp 1.0 list 2.95 .95 1.0 5 list .95 1.0

[] Develop the function to eliminate specific toys from a list. The function consumes the name of a toy, called , and a list 10pts delete ty
of names, called , and produces a list of names that contains all components of with the exception of . For example,lon lon ty

(check-expect ((list)) (list)) = #truedelete 'robot 'robot 'doll 'dress 'doll 'dress

[3] A list can be used to represent a finite set. For example, 0pts

(list 'c 'o 'm 'p)

represents the set of symbols {'c In such a representation, we assume all elements in the list are unique; there are no , 'o, 'm, 'p}.
duplicates. Develop the function that consumes a list of symbols (representing a set) and produces a list of list of symbols power los
representing the power set (set of all subsets) of . Hint: write an auxiliary function that consumes a symbol and a list los cons-all sym
of list of symbols and inserts symbol at the front of each list in lolos sym . lolos

For example, (check-expect (cons-all 'a (list (list 'c) (list 'o) (list 'm) (list 'p)) (list (list 'a
'c) (list 'a 'o) (list 'a 'm) (list 'a 'p))) = #true

Guidance:

Follow the design recipe imitating in the Sample Solution to a Programming Problem Racket HW Guide.
Problem 4 asks you to write a function that checks for the empty list as an input error and throws an aborting error in the case. (The
purpose statement should document this behavior!) In DrRacket, the function takes a single argument error not two arguments as

. We recommend using a string (text enclosed in double quotation marks) like documented in the book "An empty list of toy
 as the argument. You can test the error-throwing behavior of a function using prices triggers this aborting error" check-

 which is documented in the DrRacket Help Desk.error
Study Figure 26 in 9.4 for a detailed description of the design recipe and how it is documented in the program text that you develop.

To follow the design recipe, you must write down the , provide at least 3 well-chosen examples (more for complex type contract, purpose
functions like), write the template for the function (trivial when no recursion is involved), write the code for the function, and power
include illustrative test cases for the function (using at least the examples you developed ahead of time). You should bundle the
examples and test cases together as a block of invocations, which was not part of DrRacket when the First Edition of check-expect
the book was written. These tests should your template and code. Your chosen examples should illustrate the output you precede
expect, and the test cases should produce the actual output (leave them uncommented). If the function processes an inductive type,
make sure that your examples include the base case(s) and sample inductive cases.

https://wiki.rice.edu/confluence/display/FPSCALA/Racket+HW+Guide
https://wiki.rice.edu/confluence/display/FPSCALA/Racket+HW+Guide
https://wiki.rice.edu/confluence/display/cswiki/211Guidelines
https://wiki.rice.edu/confluence/display/cswiki/211Guidelines
https://wiki.rice.edu/confluence/display/cswiki/211Guidelines
https://wiki.rice.edu/confluence/display/FPSCALA/Racket+HW+Guide
#
#
#
#
#
#
#
#
https://wiki.rice.edu/confluence/display/FPSCALA/Racket+HW+Guide
https://wiki.rice.edu/confluence/display/FPSCALA/Racket+HW+Guide
https://wiki.rice.edu/confluence/display/cswiki/211Guidelines

	HW1

