
HW05
Homework 5: Symbolic Evaluation of Boolean Expressions
Due: Wednesday, Oct 14, 2020 at 11:59PM

200 pts.

Overview
Write a Racket function that reduces boolean expressions (represented in Racket notation) to simplified form. For the purposes of this reduce
assignment, boolean expressions are Racket expressions constructed from:

the boolean constants and ;true false
boolean variables (represented by symbols other than , , , , , , and) that can be bound to either or .true false not and or implies if true false
the unary operator .not
the binary operators , , and , andand or implies
the ternary operator .if

The course staff is providing functions and in the file that convert boolean expressions in Racket notation to a simple parse unparse rktparse.
inductively defined type called B and vice-versa. The coding of and is not difficult, but it is tedious (like most parsing) so the oolExp parse unparse
course staff is providing this code rather than asking students to write it. The Racket primitive is a procedure of no arguments that read: -> RacketExp
reads a Racket expression from the console. DrRacket pops up an input box to serve as the console when is executed.(read)

These parsing functions rely on the following Racket data definitions. Given

(define-struct Not (arg))
(define-struct And (left right))
(define-struct Or (left right))
(define-struct Implies (left right))
(define-struct If (test conseq alt))

a is either:BoolExp

a boolean constant and ;true false
a symbol representing a boolean variable;S
(make-Not X) where is a ;X BoolExp
(make-And X Y) where X and are s;Y BoolExp
(make-Or X Y) where X and are s;Y BoolExp
(make-Implies X Y) where and are s; orX Y BoolExp
(make-If X Y Z) where , , and are s.X Y Z BoolExp

A BoolRacketExp is either:

a boolean constant or ;true false
a symbol ;S
(list 'not X) where is a ;X BoolRacketExp
(list op X Y) where is , , or where and are s;op 'and 'or 'implies X Y BoolRacketExp
(list 'if X Y Z) where , , and are s.X Y Z BoolRacketExp

The provided functions and have the following signatures.parse unparse

parse: BoolRacketExp -> BoolExp
unparse: BoolExp -> BoolRacketExp

The course staff is also providing a very simple for the and functions and a containing a sequence of raw input formulas (to be test file\ eval reduce file\
parsed by function in). A good solution to this problem will include much more comprehensive test data for all functions, including some parse parse.ss\
much larger test cases for . The function is difficult to test on large data because the printed output for some important normalized reduce normalize
trees (represented as DAGs (Directed Acyclic Graphs) in memory) is so large.

Given a parsed input of type , the simplification process consists of following four phases:BoolExp

Conversion to I form implemented by the function .f convertToIf
Normalization implemented by the function .normalize
Symbolic evaluation implemented by the function .eval
Conversion back to conventional form implemented by the function .boolean convertToBool

A description of each of these phases follows. The function has type .reduce BoolRacketExp -> BoolRacketExp

https://wiki.rice.edu/confluence/download/attachments/40739977/parse.ss.txt?version=1&modificationDate=1601859348188&api=v2
https://wiki.rice.edu/confluence/download/attachments/40739977/evalData?version=1&modificationDate=1601859348126&api=v2
https://wiki.rice.edu/confluence/download/attachments/40739977/input?version=1&modificationDate=1601859348168&api=v2
https://wiki.rice.edu/confluence/download/attachments/40739977/parse.ss.txt?version=1&modificationDate=1601859348188&api=v2

Conversion to formif
A boolean expression () can be converted to form (a boolean expression where the only constructor is) by repeatedly applying the BoolExp if make-If
following rewrite rules in any order until no rule is applicable.

(make-Not X) => (make-If X false true)
(make-And X Y) => (make-If X Y false)
(make-Or X Y) => (make-If X true Y)
(make-Implies X Y) => (make-If X Y true)

In these rules, and denote arbitrary s The conversion process always terminates (since each rewrite strictly reduces the number of logical X Y BoolExp }.
connectives excluding and yields a unique answer independent of the order in which the rewrites are performed. This property is called the make-If
Church-Rosser property, after the logicians (Alonzo Church and Barkley Rosser) who invented the concept.

Since the reduction rules for this phase are Church-Rosser, you can write the function using simple structural recursion. For each of the convertToIf
boolean operators , , , , and I , reduce the component expressions first and then applying the matching reduction (except for I for And Or Not Implies f f
which there is no top-level reduction).

The following examples illustrate the conversion process:

(check-expect (convertToIf (make-Or (make-And 'x 'y) 'z)) (make-If (make-If 'x 'y false) true 'z))
(check-expect (convertToIf (make-Implies 'x (make-Not 'y)) (make-If 'x (make-If 'y false true) true))

We suggest simply traversing the tree using the structural recursion template for type and converting all structures (other than) to the BoolExp If
corresponding structures.if

Write an inductive data definition and template for boolean formulas in form, naming this type . (Note: is the only constructor, other if ifExp make-If
than variables and constants, for .ifExp

The provided function takes a Racket expression and returns the corresponding .parse: input -> BoolExp BoolExp

Normalization
An is iff every sub-expression in position is either a variable (symbol) or a constant (or). We call this type ifExp normalized test true false NormIfExp
.

For example, the is not a because it has an construction in position. In contrast, the ifExp (make-If (make-If X Y Z) U V)) NormIfExp If test
equivalent is normalized and hence is an .ifExp (make-If X (make-If Y U V) (make-If Z U V)) NormIfExp

The normalization process, implemented by the function eliminates all constructions that appear in normalize: ifExp -> NormIfExp if test
positions inside constructions. We perform this transformation by repeatedly applying the following rewrite rule (to any portion of the expression) until it if
is inapplicable:

(make-If (make-If X Y Z) U V) => (make-If X (make-If Y U V) (make-If Z U V)).

This transformation always terminates and yields a unique answer independent of the order in which rewrites are performed. The proof of this fact is left as
an optional exercise.

In the function, it is critically important not to duplicate any work, so the order in which reductions are made really matters. Do apply the normalize NOT
normalization rule above unless and are already normalized, because the rule duplicates both and . If you reduce the and the U V U V consequent altern

 (and in the left hand side of the rule above) before reducing the , runs in linear time (in the number of nodes in the input); if ative U V test normalize
done in the wrong order it runs in exponential time in the worst case. (And some of our test cases will exhibit this worst case behavior.)

Hint: define a sub-function head-normalize that takes three , , and and constructs a equivalent to . This NormIfExps X Y Z NormIfExp (makeIf X Y Z)
help function processes because the position must be a variable or a constant, yet can be an arbitrary . In contrast, X test X NormIfExp (head-

 never even inspects and because they are already normalized and the normalizing transformations performed in normalize X Y Z) Y Z head-
 never place these expressions in position.normalize test

The following examples illustrate how the and functions behave:normalize head-normalize

(check-expect (head-normalize 'x 'y 'z) (make-If 'x 'y 'z))
(check-expect (head-normalize true 'y 'z) (make-If true 'y 'z))
(check-expect (head-normalize false 'y 'z) (make-If false 'y 'z))
(check-expect (head-normalize (make-If 'x 'y 'z) 'u 'v) (make-If 'x (make-If 'y 'u 'v) (make-If 'z 'u 'v)))
(check-expect (head-normalize (make-If 'x (make-If 'yt 'yc 'ya) (make-If 'zt 'zc 'za)) 'u 'v)
(make-If 'x (make-If 'yt (make-If 'yc 'u 'v) (make-If 'ya 'u 'v)) (make-If 'zt (make-If 'zc 'u 'v) (make-If 'za
'u 'v))))

(check-expect (normalize true) true)
(check-expect (normalize false) false)
(check-expect (normalize 'x) 'x)
(check-expect (normalize (make-If 'x 'y 'z)) (make-If 'x 'y 'z))
(check-expect (normalize (make-If (make-If 'x 'y 'z) 'u 'v)) (make-If 'x (make-If 'y 'u 'v) (make-If 'z 'u 'v)))

Once a large formula has been normalized, do not try to print it unless you know that the formula is small! The printed form can be exponentially larger
than the internal representation (because the internal representation can share subtrees).

Before you start writing , write the template corresponding to the inductive data definition of .normalize NormIfExp

Symbolic Evaluation
The symbolic evaluation process, implemented by the function , reduces a to simple eval: NormIfExp environment -> NormIfExp NormIfExp
form. In particular, it reduces all tautologies (expressions that are always true) to and all contradictions (expressions that are always false) to .true false

Symbolic evaluation applies the following rewrite rules to an expression until none is applicable (with one exception discussed below):

(make-If true X Y) => X
(make-If false X Y) => Y
(make-If X true false) => X
(make-If X Y Y) => Y
(make-If X Y Z) => (make-If X Y[X <- true\] Z[X <- false])

The notation means with all occurrences of the symbol replaced by the expression . It is very costly to actually perform these M[X <- N] M X N
substitutions on data. To avoid this computational expense, we simply maintain a list of bindings which are pairs consisting of symbols NormIfExp
(variable names) and boolean values { , . The following data definition definition formally defines the type.true false binding

A is a pair where s is a symbol (a variable) and is a boolean value (an element of { , }.binding (make-binding s v) v true false

An is a .environment binding-list

When the function encounters a variable (symbol), it looks up the symbol in the environment and replaces the symbol it's boolean value if it exists.eval

These rewrite rules do not have the Church-Rosser property. The last two rewrite rules are the spoilers; the relative order in which they are applied can
affect the result in some cases. However, the rewrite rules do have the Church-Rosser property on expressions which are tautologies or contradictions.

If the final rule is applied only when actually occurs in either or , then the symbolic evaluation process is guaranteed to terminate. In this case, every X Y Z
rule either reduces the size of the expression or the number of variable occurrences in it.

We recommend applying the rules in the order shown from the top down until no more reductions are possible (using the constraint on the final rule). Note
that the last rule should only be applied once to a given subexpression.

Conversion to Boolean Form
The final phase converts an expression in (not necessarily reduced or normalized) form to an equivalent expression constructed from variables and { If tr

, , , , , , . This process eliminates every expression of the formue false And Or Not Implies If

(make-If X Y Z)

where one of the arguments { , , is a constant { , }.X Y Z true false

Use the following set of reduction rules to perform this conversion

(make-If X false true) => (make-Not X)
(make-If X Y false) => (make-And X Y)
(make-If X true Y) => (make-Or X Y)
(make-If X Y true) => (make-Implies X Y)

where , , and are arbitrary forms. This set of rules is Church-Rosser, so the rules can safely be applied using simple structural recursion.X Y Z If

Points Dsitribution
convertToIf (10%)
normalize (20%)
eval (20%)
convertToBool (10%)
reduce (40%)

	HW05

