
HW07
Homework 7 (Due 11:59pm Thursday, November 5, 2020)
Submit via SVN

Preliminaries
This homework should be done in Full Java (using DrJava, IntelliJ, Eclipse, or a text editor and command line compilation and execution). The Functional
Java language in DrJava regrettably no longer works for more complex OO code such as the visitor pattern. In this assignment, you will re-implement
each of the functions on IntLists assigned in Homework 7 using the visitor pattern.

As before, your program must support the object-oriented formulation of lists of integers defined the composite class hierarchy where

IntList is an abstract list of .int
EmptyIntList is an IntList
ConsIntList(first, rest), where is an and is an , is an first int rest IntList IntList

The Homework Support files , , , and IntList.java, IntListVisitor.java LengthVisitor ScalarProductVisitor IntListTest.java
provide a starting point for your code. Feel free to edit these files and omit files that are not needed in this homework assignment.

Problems
Apply the visitor design pattern to define visitor classes implementing the interface and its subclasses given above to IntListVistor IntList
formulate all of the following methods as visitorsJUnit test class, to test all of your new methods in the class. Use the IntListTest IntList
LengthVisitor example as a guide for defining your new visitor classes. Augment the test clas to include test methods for each of IntListTest.java
your visitor classes. Confine your documentation to writing contracts (purpose statements in HTDP terminology) for each visitor using notation javadoc
(a comment preceding the corresponding definition) beginning with and closing with for each visitor class. Use the documentation of /** */ LengthVis

 in the Homework Support files as an example.itor

(10 pts.) returns if is in the list, otherwise. Name you visitor class .)boolean contains(int key) true key false ContainsVisitor
(10 pts.) constructs a list that is the reversal of this. Name your visitor class . : this computation is faster int reverse() ReverseVisitor Hint
and simpler if you introduce a help "method" that takes an argument (also a visitor).
(10 pts.) computes the sum of the elements in the list. Name your visitor class SumVisitor.int sum()
(10 pts.) computes the average of the elements in the list; returns if the list is empty. Name your visitor class double average() 0 AverageVi

. : you can an to by using the prefix casting operator . sitor Hint cast int double (double)
(10 pts.) returns a list of elements in this list that are less than or equal to . Name your visitor IntList notGreaterThan(int bound) bound
class .NotGreaterThanVisitor
(10 pts.) returns a list of all elements in this list that are not equal to . Name your visitor class RemoveVisitorIntList remove(int key) key
(10 pts.) returns a list of all elements in this list with replaced by . Name your visitor IntList subst(int oldN, int newN) oldN newN
class SubstVisitor
(15 pts.) merges this list with the input list other, assuming that this list and other are sorted in ascending IntList merge(IntList other)
order. Note that the lists need not have the same length. Name your visitor class . : add a "method" MergeVisitor Hint mergeHelp

 that does all of the work if one list is non-empty (a). Only is recursive. Use dynamic (ConsIntList other) ConsIntList mergeHelp
dispatch on the list that may be empty. Recall that is equivalent to . You can formulate help methods as visitors.a.merge(b) b.merge(a)
(15 pts.) . Leveraging the "method" you just wrote (as a visitor), write that sorts an RIntList mergeSort() merge mergeSort() IntList.
ecall that you need to write a help function that splits a list approximately in two.

Testing Tricks
In Racket, the function performs structural equality. Java does not include such a built-in operation. For the composite type, we equal? IntList
overrode the inherited method (trivially defined in class) by an equals method that implements structural equality but it is slightly more equals Object
complex than you might expect. Recall that the argument passed to has type . Hence, we have to worry about the class of the argument; equal Object
the simple (and IMO best) definition of structural equality is to mandate that objects cannot be equal unless they are instances of the same class. Study
the definition of the method in class . Unfortunately, we can write the body of this method the of a boolean-valued equals ConsIntList return
expression, because Java does not support a notion of or at the level of expressions. So the body is an statement where explicit local let if return
statements in the consequent statement and alternative statement. Notice that we still programmed in a functional style without any mutation.

To test the computations that yield results of composite type, we can either define structural equality over the composite type (as we did for) or IntList
write an intelligible toString method for the composite type (which I strongly recommend for debugging purposes) and compare the toString()
representations of the composite type. But beware that equality may not imply structural equality and vice versa. You should always toString()
endeavor to make them agree.

	HW07

