
HW08
Homework 08: Symbolic Evaluation of Boolean Expressions in Java

Due: 11:59pm Monday, Nov 16, 2020

200 points

Overview
Write a Java program that reduces boolean expressions (represented in the input and output streams in Racket-like notation) to simplified form. For the
purposes of this assignment, boolean expressions are Racket expressions constructed from:

the symbols and denoting the boolean values and ;T F true false
boolean variables (represented by symbols other than , , , , , , and that can be bound to either or .T F ! & | > ? true false
the unary function meaning .! not
the binary functions , , and denoting , , and , respectively), and& | > and or implies
the ternary function meaning .? if

Note that the concrete (surface) syntax for boolean expressions differs from Assignment 5 because we are using the shorter names , , , , , , and T F ! & | > ?
are used instead of , , , , , , and for notational brevity, which in very large inputs. You can write your Java true false not and or implies if matters
code to perform boolean simplification using either the interpreter pattern of the visitor pattern. The latter is perhaps slightly harder since there is more
notational overhead, but it is valuable practice if you anticipate writing significant Java applications involving immutable inductively defined data

The course staff is providing

the Java "stub" files (where the functions in the simplifier are written using the visitor pattern) and (whboolSimp.java interpBoolSimp.java
ere the functions in the simplifier are written using that defines a composite hierarchy of "abstract syntax" tree classes rooted in the class Form
representing boolean expressions;
a Java library file contain a class withParser.java Parser

a method that reads a boolean expression represented in concrete syntax ("Racket form"_ and returns the corresponding Java read() F
 abstract syntax tree; andorm

a method that composes the visitors you must write in to reduce whatever formula the instance reduce() boolSimp.dj Parser
contains to simplified form.

a Java "stub" test file that includes some rudimentary tests of the code in the (and similarly boolSimpTest.java boolSimp.java interBoolS
 stub file. imp.java)

The stub files b and also include comments showing you exactly what code you have to write to complete oolSimp.java interpBoolSimp.java
writing your simplifier. Of course, you also need to write corresponding tests and add them to the file .BoolSimpTest.java

The file is provided primarily to enable you to test your solution on large inputs stored in files. includes two Parser.java Parser.java Parser
constructors and for building parsers to parse the boolean expression (in concrete syntax form) in the Parser(File file) Parser(String form)
specified or , respectively. Since the Java library class is defined in the package , which is not imported by default (unlike File String File java.io jav

), you need to insert eithera.lang

import java.io.*;

or more specifically

import java.io.File;

at the head of a test file that uses the class on the contents of a file.Parser
To construct a for the formula in a file you can invokeParser <fileName>

new Parser(new File("<fileName>"));

If you omit the wrapper around the name of the file and simply use instead, you will create a for the new File(...) String "<fileName>" Parser
String . which is then interpreted as a simple boolean variable. The input medium is important because it enables us to conveniently "<fileName>" File
apply your simplifier to formulas that are thousands of symbols long. As a result, for this assignment you only have to translate the Racket code in boolsim

 into corresponding cleanly-written OO Java code by filling in the gaps in our Java stub file (or . You p.rkt boolSimp.java interpBoolSimp.java)
are expected to appropriately use the composite, interpreter, singleton, and visitor patterns in the code that you write. Since the only stub files that you
have to modify are (or) and , simply upload working versions of these files to the Rice boolSimp.java interpBoolSimp.java boolSimpTest.java
SVN repository to "turn in" your assignment. we will run your program on large inputs to determine if you wrote the code correctly. Try using the Warning:
large test files provided on the course wiki.

1.

2.

3.

All of the support files for this assignment are written Java rather than functional Java because the functional Java translator embedded no standard
longer works well enough to write non-trivial programs like a boolean simplifier. In principle, a very nice solution to this problem can be written in
functional Java. If I (with the help of students in Comp 402/501) manage to rewrite/repair the functional Java translator this spring, future editions of this
assignment may be conducted entirely in functional Java. We expect you to write functional code (mutation of data structures or the cells holding the
bindings of variables). If you use DrJava as your IDE, make sure that the language is set to "full Java".

The Racket file includes Racket functions and to translate Racket lists into abstract syntax trees and vice-versa. Racket boolSimp.rkt parse unparse
provides a simple external syntax for lists (in homage to its LISP heritage) but Java does not. Hence the Java class works on Java strings instead Parser
of lists. The Java visitor class in the file performs unparsing of the abstract syntax types and to type .Print BoolSimp.java Form IfForm String

As in Homework 5, the Racket parsing functions in rely on the following Racket data definitions.boolSimp.rkt

Given

(define-struct Not (arg))
(define-struct And (left right))
(define-struct Or (left right))
(define-struct Implies (left right))
(define-struct If (test conseq alt))

a is either:boolExp

a boolean constant and ;true false
a symbol representing a boolean variable;S
(make-Not X) where is a ;X boolExp
(make-And X Y) where =X and are ;Y boolExps
(make-Or X Y) where =X and are ;Y boolExps
(make-Implies X Y) where {{X and are ; orY boolExps
(make-If X Y Z) where , , and are .X Y Z boolExps

Notes:

The operator must be written as \| in Racket instead of because is a metasymbol with a special meaning in Racketor | |

.
In essence, is a solution to Homework 5. The Java code in the file assumes the input in written in Racket boolSimp.rkt Parser.java
notation, but with the following abbreviations to shorten the length of formulas:

Abbreviation Original Symbol

T true

F false

! Not

& And

| Or

> Implies

? If

The Java abstract syntax classes include a separate composite hierarchy (called ifExp in boolSimp.rkt). This representation includes only
three concrete variant classes, making it much easier to write the visitors that perform normalization, evaluation, and convert-To-Bool.

Hints on Writing Your Java Code
The visitor pattern is a straightforward but notationally cumbersome alternative to the interpreter pattern. You can mechanically translate interpreter
pattern code to visitor pattern code. (Perhaps IDEs like Eclipse should support such transformations.) The interpreter solution to this assignment is a
bit easier to write than the visitor solution. If you are still learning Java mechanics, you are encouraged to write an interpreter solution first and
perhaps translate it later to visitor form. A perfect visitor solution will be given 10 extra points over a perfect interpreter solutionu. If you submit an
interpreter solution, your program must conform to class signatures given in the interpreter pattern support code below (just as a visitor solution
must conform to the class signatures given in the visitor pattern code below).

The interpreter version of the support code replaces the , , , , and visitors by ConvertToIf Normalize HeadNormalize Evaluate Print
methods named , , , , and . The classes Parser.java and InterpParser.java contain convertToIf normalize headNormalize eval print
references to these visitor class names and method names, respectively

Support Code
Here are the links for the files:

boolSimp.rkt is the reference Racket program.
b java is a stub program for a visitor solution.oolSimp.
b is a stub test file for a visitor solution.oolSimpTest.java\
Parser.java is a parser file for a visitor solution.
interpBoolSimp.dj is a stub program for an interpreter solution.
i is a stub test file for an interpreter solution.nterpBoolSimpTest.java
InterpParser.java is a parser file for an interpreter solution.

InterpParser.java is distinct from because the code for the method embedded in the parser is different in the two Parser.java reduce
versions.

Sample Input Files
The following files contain large formulas that can be reduced by your simplifier. Only the files named x require a larger thread stack size bigData
than the JVM default on most platforms. to handle the x files, you must set JVM argument -Xss64M for the Interactions JVM using NOTE: bigData
the DrJava Preferences command on the Edit menu. The JVM argument setting can be found on the last panel (called JVMs) in the Preferences
categories tree.

littleData1\ -> "T"
littleData2\ -> "T"
littleData3\ -> "(> h (> g (> f (> e (> d (> c (! b)))))))"
littleData4\ -> "(> h (> g (> f (> e (| d (| c (| b a)))))))"
bigData0\ -> "T"
bigData1\ -> "(> j (> i (> h (> g (> f (> e (| d (| c (| b a)))))))))"

https://wiki.rice.edu/confluence/download/attachments/40743823/boolsimp.ss?version=1&modificationDate=1604646633679&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/BoolSimp.dj?version=1&modificationDate=1604646633651&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/BoolSimpTest.java?version=1&modificationDate=1604646633690&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/Parser.java?version=1&modificationDate=1604646633834&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/interpBoolSimp.dj?version=1&modificationDate=1604646633701&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/InterpBoolSimpTest.java?version=1&modificationDate=1604646633727&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/InterpParser.java?version=1&modificationDate=1604646633773&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/littleData1?version=1&modificationDate=1604646633786&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/littleData2?version=1&modificationDate=1604646633798&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/littleData3?version=1&modificationDate=1604646633812&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/littleData4?version=1&modificationDate=1604646633824&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/bigData0?version=1&modificationDate=1604646633560&api=v2
https://wiki.rice.edu/confluence/download/attachments/40743823/bigData1?version=1&modificationDate=1604646633639&api=v2

	HW08

