
1.
2.
3.
4.

Habanero-C
The Habanero-C (HC) language under development in the project at Rice University builds on Habanero
past work on , which in turn was derived from v1.5Habanero-Java X10

Overview
HC Language Summary

Task Creation and Termination
Data-Driven Task Synchronization
Phaser Synchronization
Data Parallel Loops
Hierarchical Place Trees (HPT's)

Current HC limitations
Acknowledgement

Overview

The Habanero-C (HC) language under development in the project at Rice University builds on Habanero
past work on , which in turn was derived from v1.5. HC serves as a research testbed Habanero-Java X10
for new compiler and runtime software technologies for extreme scale systems for homogeneous and
heterogeneous processors. Like HJ, HC implements an execution model for multicore processors based
on four orthogonal dimensions for portable parallelism:

Lightweight dynamic task creation and termination using async, finish, data-driven futures.
Collective and point-to-point synchronization using phasers
Mutual exclusion and isolation using isolated (not yet supported)
Locality control using hierarchical place trees

Unlike HJ which needs a JVM to run, Habanero-C is designed to be mapped onto hardware platforms
with lightweight system software stacks, such as the Customizable Heterogeneous Platform (CHP) being
developed in the NSF Expeditions Center for Domain-Specific Computing () which includes CPUs, CDSC
GPUs, and FPGAs. The C foundation also makes it easier to integrate HC with communication
middleware for cluster systems, such as MPI and GASNet.

The Habanero-C compiler is written in C++ and is built on top of the compiler infrastructure, which ROSE
was also used in the DARPA-funded project at Rice University. The bulk of the Habanero-C PACE
runtime has been written from scratch in portable ANSI C. However, a few library routines for low-
level synchronization and atomic operations are written in assembly language for the target platform. To
date, the Habanero-C runtime has been ported and tested on Intel X86, Cyclops 64, Power7, Sun
Niagara 2 and Intel SCC multicore platforms.

A short summary of the HC language is included below. Details on the underlying implementation
technologies can be found in the Habanero web page. The HC implementation is still publications
evolving at an early stage. If you would like to try out HC, please contact one of the following people: Zora

, , or .n Budimli Vincent Cave Vivek Sarkar

Habanero-C has two basic primitives for the task parallel programming model borrowed from
X10: and . The statement, , causes the parent task to fork a new async finish async async <stmt>
child task that executes . Execution of the statement returns immediately, i.e., the <stmt> async
parent task can proceed to its following statement without waiting for the child task to
complete. The statement, , performs a join operation that causes the parent finish finish <stmt>
task to execute <stmt> and then wait until all the tasks created within have terminated <stmt>
(including transitively spawned tasks). The Habanero-C runtime uses a work-stealing scheduler
that supports work-first and help-first policies along with places for locality
Habanero-C uses for synchronization. Phasers are programming constructs that unify phasers
collective and point-to-point synchronization in task parallel programming. Phasers are designed
for ease of use and safety, helping programmer productivity in task parallel programming and
debugging. The use of phasers guarantees two safety properties: deadlock-freedom and phase-
ordering. These properties, along with the generality of its use for dynamic parallelism,
distinguish phasers from other synchronization constructs such as barriers, counting
semaphores and X10 clocks. In Habanero-C tasks can register on a phaser in on of the 3
modes: SIGNAL_WAIT_MODE, SIGNAL_ONLY_MODE, WAIT_ONLY_MODE.
For locality, Habanero-C uses . HPTs abstract the underlying Hierarchical Place Trees(HPTs)
hardware using hierarchical trees, allowing the program to spawn tasks at , which for places
example could be cores, groups of cores sharing cache, nodes, groups of nodes, or other
devices such as GPUs or FPGAs. The work-stealing runtime takes advantage of the hardware
hierarchy to preserve locality when executing tasks.

HC Language Summary

http://habanero.rice.edu/
http://habanero.rice.edu/hj
http://x10-lang.org/
http://habanero.rice.edu/
http://habanero.rice.edu/hj
http://x10-lang.org/
http://cdsc.ucls.edu/
http://www.rosecompiler.org/
http://pace.rice.edu/
http://habanero.rice.edu/Publications.html
http://www.cs.rice.edu/~zoran/
http://www.cs.rice.edu/~zoran/
mailto:vincent.cave@rice.edu?subject=CnC-HJ%20release
http://www.cs.rice.edu/~vsarkar
http://www.cs.rice.edu/~vsarkar/PDF/Guo-et-al-IPDPS-2010.pdf
http://www.cs.rice.edu/~vsarkar/PDF/SPSS08-phasers.pdf
http://www.cs.rice.edu/~vsarkar/PDF/hpt.pdf

Task Creation and Termination

async [(place)] [IN (var1, var2, ...)] [OUT (var1, var2, ...)] [INOUT (var1, var2, ...)]

[AWAIT (ddf1, ddf2, ...)] [phased] Stmt

- Asynchronously start a new task to execute Stmt in parallel with the parent. A destination place can
optionally be specified for where the task should execute. The place can be obtained from the runtime
using HC runtime functions (see)HPT .

- Any local variable declared in an outer scope that is used in the async has to be specified in an IN (for
variables read by the async), OUT(for variables written by the async), or INOUT(for variables both read
and written by the async) clauses. The IN/OUT/OUT clauses have copy-in/copy-out semantics for local
variables; selected variables are copied in from the parent scope at the start of the async, and out into
the parent scope at the end of the async task.

- an AWAIT clause can optionally be specified, listing all the data-driven futures (DDF's) that the task
should wait on before starting its execution.

- a phased clause can optionally be specified, registering the async on all the phasers specified in the list
(ph1, ph2, ...), or on all the phasers of the parent (if the list is not specified).

finish Stmt

 - execute Stmt, but wait until all (transitively) spawned asyncs in Stmt's scope have terminated before
advancing to the next statement.

Data-Driven Task Synchronization

DDF_CREATE() --- a library function that creates a Data-Driven Future (DDF), and returns a pointer to a
DDF_t type. A DDF is a single-assignment container that is initially empty, and becomes full after a
DDF_PUT operation is performed on it.

DDF_GET(DDF_t * ddf) --- if ddf is full, return the value stored in ddf's container. If ddf is empty, the
runtime will exit with an assertion failure.

DDF_PUT(DDF_t * ddf, void * value) --- if ddf is empty, perform a put of value into ddf. If ddf already has
a value, the runtime will exit with an assertion failure.

async AWAIT ...) Stmt --- wait until all the DDF's in the list (ddf1, ddf2, ...) have their values (ddf1, ddf2,
filled in before asynchronously starting the execution of Stmt. Stmt can safely perform a GET on the
DDF's specified in the list.

Phaser Synchronization

phaser *ph = PHASER_CREATE(mode) --- create a phaser and register the calling task on the phaser
with the specified mode.

async phased Stmt --- register the async with all phasers created by the parent in the immediate
enclosing finish scope and asynchronously execute Stmt

async phased SIGNAL_ONLY(ph1, ...) WAIT_ONLY(ph2, ...) SIGNAL_WAIT(ph3, ...) Stmt

-- register an async on specific phasers with specific modes. The parent should be registered on all the
phasers in modes that are greater than or equal to the modes of the child as shown below.

SIGNAL_WAIT > SIGNAL_ONLY
SIGNAL_WAIT > WAIT_ONLY
SIGNAL_ONLY = WAIT_ONLY

NEXT--- synchronize on all the phasers that the task is registered on.

Data Parallel Loops

 forasync [in (var1, var2, ...)] [point (ind1, ind2, ...)] [size (siz1, siz2, ...)] Body[seq (seq1, seq2, ...)]

-- The semantics of the clause is the same as in the case.in async

-- Loop indices in each dimension are specified by the clause.point

-- The number of iterations in each dimension is specified by the clause.size

-- The tile size is specified by the clause.seq

 is lowered and implemented for CPUs in two different ways as follows.forasync

1) Chunked Scheduling: Loop iterations are chunked into blocks of lengths specified by the clause.seq
(Default option)

2) Recursive Scheduling: Loop iterations are recursively partitioned until the size of a block size specified
 is reached. This is similar to the TBB style. (use '-hcc:recursive' option when compiling by the clauseseq

your program)

 targets by automatically generating host code and OpenCL device forasync heterogeneous platforms
code.

Note: The semantics of does not include a barrier. An explicit must enclose the forasync finish fo
 to synchronize all the iterations.rasync

Hierarchical Place Trees (HPT's)

A Hierarchical Place Tree (HPT) is an optional abstraction of the memory hierarchy that a Habanero-C
program is executed on, specified as an XML document that conforms with hpt.dtd. If an HPT is not
specified, the HC systems assumes a single-level hierarchy consisting of the specified number of
workers. For example, one possible .xml file for an 8-core node is as follows:

<?xml version="1.0"?>
<!DOCTYPE HPT SYSTEM "hpt.dtd">
<HPT version="0.1" info="an HPT for SUGAR, 2 quad core2 Intel Xeon processors">
 <place num="1" type="mem">
 <place num="2" type="cache"> <! 2 sockets >
 <place num="2" type="cache"> <! 2 L2 cache per socket >
 <place num="2" type="cache"> <! 2 L1 cache per L2 >
 <worker num="1"/>
 </place>
 </place>
 </place>
 </place>
</HPT>

The HPT is specified using the -hpt option when invoking the HC executable. For example, the following
cmmands creates an HC runtime instance with 8 workers organized in accordance with the specified
HPT.

./a.out -nproc 8 -hpt sugar.xml

The following API calls enable an HC program to navigate the HPT:

short (place_t * pl) --- is pl a CPU place?is_cpu_place

short (place_t * pl) --- is pl a device (GPU or FPGA) place?is_device_place

short (place_t * pl) --- is pl a NVIDIA GPU place?is_nvgpu_place

place_t* () --- get the place where the task is currently executinghc_get_current_place

int (short type) --- get the number of places of the specified type (hc_get_num_places NVGPU_PLACE,
MEM_PLACE or FPGA_PLACE)

void (place_t ** pls, short type) --- get an array of all the places of the specified typehc_get_places

place_t * (short type) --- get any place of the specified type hc_get_place

place_t * (hc_workerState * ws) get_ancestor_place

place_t * () --- get the child place on the path from the current place to the leaf place hc_get_child_place
of the current worker

place_t * () --- get the parent place of the current place in HPThc_get_parent_place

place_t ** (int * numChildren) --- get an array of all the child places of the current hc_get_children_places
place

Current HC limitations

There are some limitations and pitfalls in the current implementation of the HC programming model.
These limitations are not inherent to the programming model, but rather are a result of incompleteness in
the current compiler or runtime implementation.

1) (including stack-allocated arrays) cannot be reused across "suspendable" Pointers to stack variables
points. A suspendable function is a function that can directly or indirectly call a function containing an
async statement or a finish statement. A suspendable point is an async statement, the end of a finish
statement, or a call to a suspendable function.

Work-around: copy these stack variables to the heap. There is no limitation on the reuse of heap pointers
across suspendable points.

2) (functions that contain HC constructs or call other HC functions) are not Pointers to HC functions
supported in HC.

Work-around: only use pointers to C functions.

3) are not supported for function parameters or local variables in HC programs.const modifiers

Work-around: remove these 'const' modifiers. The semantics of a correct program will remain
unchanged, since the only purpose of the 'const' modifiers is to enforce additional compiler checking.

4) The cannot be larger than the number of worker threads number of tasks registered on a phaser
specified with the -nproc option when an HC program is invoked. Otherwise, a deadlock may occur.

5) HC function calls must be in canonical form; either being a statement or being the right hand-side of
an assignment.

Canonicalized HC function usage

foo();
b = foo();
a = b + c; // 'foo' value must first be assigned to a variable

Acknowledgement

Partial support for Habanero-C was provided through the CDSC program of the National Science
Foundation with an award in the 2009 Expedition in Computing Program.

http://www.nsf.gov/
http://www.nsf.gov/

	Habanero-C

