
1.  
2.  
3.  
4.  
5.  
6.  

1.  
2.  
3.  
4.  

5.  

1.  

2.  

211lab00_S11
Getting Started – DrRacket, Design Recipe
Original Author: Dr. John Greiner

Getting Started – DrRacket, Design Recipe
DrRacket (aka DrScheme) Basics

Simple example of using DrRacket
Step-by-step Evaluation
Design Recipe
Simple Data: Booleans and Symbols
Other Basics

The main goals of this lab are to ensure that you can

use the basic functionality of DrRacket and
write simple programs in a systematic manner.

Outside of lab, don't forget to get a homework partner, if you haven't already. If you're having trouble getting a partner, try using the .sign up sheet

---- 

DrRacket (aka DrScheme) Basics

The following are instructions for the Ryon Lab's Linux environment:

Via the graphical user interface (GUI):

Open the folder on your desktop that is labeled with your NetID (" 's Home")netID
Right-click on an open spot in the folder window and select "Create Folder".
Name the new folder (directory) "Comp211".
Double-click the Comp211 folder to open it and inside of it, create another folder (a sub-folder) called "Lab00".
Save all your Lab00 work to this folder. For submitting homeworks, see the .Owlspace page for Comp 211
Start DrRacket by going to the main Linux "Applications" menu and in the "Rice" sub-menu, clicking on "DrRacket".

Via a command line:

Open a terminal (right click anywhere on the desktop and select "Open Terminal").
Make a new folder (directory) called , for this course. The command is for making a new folder on Linux is .Comp211 mkdir
Make a sub-folder in  called .Comp211 Labs
Make a sub-folder in  called . Save all your Lab00 work to this folder. For submitting homeworks, see the Labs Lab00 Owlspace page for Comp 

.211
Start DrRacket by typing the command " " or " " (no quotes).drscheme drracket

If this is the first time you've run DrRacket, it will ask you your preferred language, and the Scheme language level; the latter should be "Beginning Student 
with List Abbreviations". This language level provides the expected set of primitive operations and enables DrRacket to reject "legal" Scheme constructions 
that are not part of our introductory dialect.  Read the   page for helpful information on common mistakes, error messages, etc.DrRacket Tips and Traps

The DrRacket window is divided into two halves. The lower half, or , is the Scheme "calculator". The top half, or  is just interaction window definition window
a text editor which is smart about indenting Scheme, and such. The  button sends the contents of the definition window down to the interaction execute
window, where they are actually evaluated.

We suggest that you download DrRacket to your home computer/laptop. Versions are available for all major platforms.

For our running example, we'll look at a common college problem: how to divide the cost of a pizza. For simplicity, we'll assume that a pizza costs $12 and 
is cut into 8 slices.

Simple example of using DrRacket

Type (or copy/paste) the following expressions into the interactions window

(+ 2 7)

(* (+ 2 7) 3)

Type (or copy/paste) the following blocks of code into the definition window, including:

https://wiki.rice.edu/confluence/display/cswiki/211partners_S11
https://owlspace-ccm.rice.edu/portal/site/COMP-211-001-Sp11
https://owlspace-ccm.rice.edu/portal/site/COMP-211-001-Sp11
https://owlspace-ccm.rice.edu/portal/site/COMP-211-001-Sp11
https://wiki.rice.edu/confluence/display/cswiki/DrRacket+Tips+and+Traps


2.  

3.  

4.  

5.  

6.  

7.  

8.  

1.  
2.  

a.  
b.  
c.  

3.  
4.  

1.  

;; contract:
;; owe: nat -> num
;; purpose:
;; (owe n) returns how much money you owe for eating n slices of pizza.
;; definition:
(define (owe slices)
   (* (/ 12 8) slices))

Observe that DrRacket helps you with the indentation if you use the Return key in appropriate places. It also "bounces" the cursor to visually 
match the closing parenthesis with the corresponding opening parenthesis.
Use the definition of  by typing in the interaction window some Scheme expressions using those definitions, ,owe e.g.

(owe 5)

(owe 7)

We included  before each function definition, explaining what it is supposed to do.  DrRacket ignores the comments, but you, your comments
grader, your boss, etc., can read them. Soon, we'll provide more guidance on what to say in your comments.

; One form of comments is anything following a semicolon
; up to the end of the line.
;; However, you'll often see two semicolons starting a comment.

#|
  Another form of comments is anything between these
  two matching markers.
|#

You can also go to the  menu, choose . You are welcome to do this, but one caveat: if Special Insert comment box
DrRacket 
saves a file which includes a fancy comment box, the file will not be saved in plain-text format. (This is only an issue if you want to open or print 
the file with a different program later.)
Edit your definitions or comments some. You can use the mouse, the arrow keys, backspace, and standard keyboard shortcuts to move the 
cursor around. Also, the PC, Mac, and Unix versions of DrRacket each use their respective standard keyboard shortcuts. (You can look in the Edit 
menu under Keybindings for the complete list.)
Load the definitions into the interaction window by clicking on the  button. If DrRacket detects any syntactic errors, it will give you an error Run
message in the interactions window and highlight the error in the definitions window.
Save your work in your  directory. Be sure to use a filename that has a  extension. You don't need to turn in your lab Comp211\Labs\Lab00 .ss
work. In fact, you don't have to save it, but we recommend it so that you can look at it again.
Finally, intentionally introduce an error or, what you  will be an error, press , and see what error message is given. We'll go around the think Run
room to see what different error messages people get. Do the error messages tend to make sense?

DrRacket has lots of other features, including a complete manual. We'll explore more of DrRacket in later labs, and we encourage you to explore, but 
there's no need to learn all its features. 

Enabling Linux to open .ss files with DrRacket: 

Right-click any .ss file and select "Properties".
Switch to the "Open With" tab.  If DrRacket already appears as a choice, be sure that it is selected,  otherwise

Click the "Add" button.
In the dialog box that appears, scroll down and select "DrRacket" and click "Add".
DrRacket should now appear on the list of available programs. Be sure that the radio button for DrRcket is selected.

Click "Close".
Double-clicking any .ss file will now open it with DrRacket.   You will need to run it once to get the Interactions window to appear or click "Show 
Interactions Window" from the "View" menu.

Step-by-step Evaluation

While DrRacket evaluates our Scheme programs for us, it is also important for us to understand the process of evaluation. The details of evaluation will be 
covered in class. Here in lab, we want to explore two useful tools to help us:

DrRacket's stepping tool that illustrates evaluation.
A technique for the programmer to illustrate and check evaluation "by hand".

Using DrRacket's stepper



1.  

2.  
3.  

1.  

2.  
3.  

1.  

2.  

Place an example use or two of your functions in the definitions window, after the appropriate definitions. For example,

      (owe 10)
   

Click on the  button. This brings up a new stepper windows which will show ow DrRacket calculates the answer.Step h
Use the stepper's button to look through the evaluation. At each step, it shows what part of the code needs to be evaluated next, and what the 
result is.

Illustrating hand-evaluation

"Hand-evaluation" is just  doing the same thing as DrRacket's stepper. It is useful to convince yourself that you know what is supposed to happen, you
independently of having DrRacket help you.

Hand-evaluate a few example expressions, and type in each of the small steps you would make to calculate the result. Type these in the 
definitions window after your definitions. For example,

;; Hand-evaluation:

(owe 10)

(* (/ 12 8) 10)

(* 3/2 10)

15
 

This is just high school algebra, successively simplfying , until you reach a final, simple .expressions value
What do you hope to see, when you  all these expressions? What would you see if there were a mistake?Run
While you are doing this, it is often helpful to copy the previous step, and edit this copy for the current step. This can save you some 
typing, and it helps eliminate mistakes. You'll want the  and  features in the  menu.Copy Paste Edit

Verify your steps by clicking .Run
Once you've used this to verify your steps, put the steps in comments, rather than deleting them. (Later, you might change the code, and you 
want to re-use these as test cases.)

Design Recipe

We will discuss these in class this coming week, but here's a preview. Programming methodology is a very important component of this course, and you 
will be required to follow these ideas, so the earlier you get into the habit of using them, the better.

When writing programs, there are lots of things we need to think about. It helps if we have some guidelines to follow that remind us to do these things in 
the proper order. While following some strict rules can seem annoying at first, in the end it will save you lots of errors and grief. These guidelines will be 
our .design recipes

Working with unstructured data, like the numbers that we've seen, is relatively simple. With more complicated data and program styles, we will add to the 
following steps.

Write the function's contract, purpose, and header. The  specifies the function name and what kind of values the function will use as contract
input and output. The  is a short statement describing  (not how) the function will calculate. The  is the part of the function purpose what header
definition specifying the function and parameter names. Type these in the definition window. Put the contract and purpose in comments, as in the 
following examples:

      ;; contract:
      ;; owe : nat -> num
      ;;
      ;; purpose:
      ;; (owe n) returns how much money you owe for eating n pizza slices.
      ;;
      ;; header:
      (define (owe slices) ...)
  

We won't use DrRacketto verify that our contracts are correct, although that is a very useful thing to do. Look for that in COMP 212.
Make some examples of what the function should compute. You need to make sure you understand what the function is supposed to do 
before you define it. When applicable, use some of the example data. We recommend the following form for these examples:



2.  

3.  

4.  

1.  
2.  

      ;; Examples:
      ;; (owe 0) => 0
      ;; (owe 10) => 15
   

The first line provides an explanation of the following, making it more readable. (We haven't introduced symbols yet officially -- we will see them in 
class soon.) The next two lines each give an example, asking DrRacketto compare (with the numeric equality function =) the actual result with the 
expected result. You should pick enough examples to test the function adequately. We'll say more about that later, but this should include any 
interesting inputs like zero.
Test the function. i.e., make sure the previous examples really work. If you wrote the examples as suggested above, you can use them to test 
the function. Add a test section after your examples, like this:

      ;; Tests:
      (check-expect (owe 0) 0)
      (check-expect (owe 10) 15)
   

All of these tests should pass , assuming that the code for  is correct. The more elaborate your test, the more errors you'll catch sooner and owe
the less time it will take to write a correct function. Note that at this point  has not been written yet. Still we write the test code first! This is one owe
of the key steps in modern software development: test before coding. It is called . This is where we deviate from the test-driven development
design recipe describe in HTDP (the textbook). We write the test code first!
Write the function body. Soon, we will have  to say about this step. For now, for programs on "unstructured" data, this is very lots
straightforward, because we are typically given an equation like …

      ;; definition:
      (define (owe slices)
         (* (/ 12 8) slices))
   

For sets of intervals or other conditional functions, there should be exactly one condition clause per option.

Using the design recipe, define a function calculating the area of a right isosceles triangle.

Simple Data: Booleans and Symbols

We've seen that DrRacket has

numbers:  ,  ,  , ...17 -42.89 3/17
Booleans:  , true false
symbols:  ,  ,  , ...'central-daylight-time 'galatea2.2 'mary

Numbers are old hat, so let's explore Booleans and symbols some.

Exercises: Using built-in data

Try calling some the built-in operations like , , , , ,  on various data values, , is 17 times 18 bigger than 256?<= = and or not equal? e.g.
What are the contracts of these built-in functions?
*Choose any two, and write down the contract.
*Verify your guess by asking the labby
or by using DrRacket's Help Desk to look at the
manual for the Beginning Student language.
*Practice writing a function which returns a Boolean:

,Following the design recipe
write

within-two?

which takes in two numbers
 and , and returns true ifm n

 and  are bothm - n n - m
less than .2
Otherwise, it should return false.
(For learning purposes only, don't use ,abs
which computes the absolute value. Also, don't use



2.  

 or .)cond if
Your examples/tests can look like

     (check-expect (within-two? 99.8 101) true)
     (check-expect (within-two? 5 -5)     false)
            

Sample solution

Other Basics

We assume that you already know how to use email and a Web browser. If you have any trouble, ask a labbie during office hours, or contact the staff of 
the information desk in Mudd.

Always "log out" from your account when you are done and leaving. Otherwise, someone can use your account, e.g., to copy or delete your 
assignments. Be sure to save everything before you log out!

https://wiki.rice.edu/confluence/display/cswiki/210lab01withintwo1

	211lab00_S11

