
1.

2.

3.

4.

211hw8_S11
Homework 08 (Due 11:59pm Tuesday, March 22, 2011)
Submit via Owl-Space

Preliminaries
This homework on manipulating Java lists must be done using the Functional language level of DrJava.We are providing skeleton classes for each
problem with unimplemented methods for you to write. Each such class includes a method with a name like that converts lists to more listString()
readable String notation similar to that used in Scheme. You can put all of your classes (except test classes) in the same file. Write a test class for each
composite data type (, , , , and).Word WordList ComparableList ObjectList ArithExpr

Composite Design Pattern for List
Write the (permutations) function from HTDP problem 12.4.2 in HW2 as a Java method for a class provided in the file arrangements Word Word

. This file includes definitions of the composite pattern classes and . Decompose the problem in exactly the same form as .dj1 Word WordList thi
 to problem 12.4.2. We are providing skeletons for the classes and in the file ; use them.s solution Word WordList WordList.dj1

Write the function from the last problem in HW4 (using exactly the same top-down approach described in HW4) as a Java method in mergesort
the composite pattern class provided in the file .ComparableList ComparableList.dj1
Do Exercise 21.2.3 from HTDP using the Java composite pattern class provided in the file . This file includes the ObjectList ObjectList.dj1
interface , which is the type of Java function arguments passed to the method, and abstract method stubs for , Predicate filter filter elimi

, , and . Exercise 21.2.3 provides Scheme code for the function which you should directly translate to the nateExp recall selection filter
corresponding Java method code in . Note that your method should work for arbitrary . In coding the ObjectList filter ObjectLists
methods , , and , use the Java type (compared using method in place of the Scheme eliminateExp recall selection Number doubleValue

 type and the Java type in place of the Scheme type. The method in returns the value of this number Object symbol doubleValue() Number
converted to a . You will need to cast the input of the method to type when filtering lists of numbers.double Object test Number
Do Problem 2 from Homework 5 in Java using the composite hierarchy of classes provided in the file . ArithExpr.dj1

Are You The Last Element In A List?

A difficulty when processing lists is how to tell if one is at the last element of the list. This is useful in a number of situations, such as in the merge sorting
process above.

In class, the following shortcut was shown but with the clear caveat that this style of programming is only being done for brevity's sake at this point and that
it will NOT be tolerated in the future:

(THE FOLLOWING CODE USES GENERIC NAMES FOR EVERYTHING. DO NOT ROTE COPY AND USE THESE NAMES!)

// In a method of a ConsList

if(rest == EmptyList.ONLY) {
 // we are at the last element, so process accordingly
}
else
{
 // we are not at the last element, so process accordingly
}

The above code is frowned upon because it is an encapsulation violation of , amounting to a checking of its type. You may use this style for this rest
assignment, but it is and you can expect to be marked down for it in the future.not recommended

The better solution is to delegate to and let it continue the processing in a manner consistent with what it is. Remember that the last element of a rest
list is defined by the fact that its is , or conversely, the parent of an list is the last element. This thus requires a helper method:rest empty empty

https://wiki.rice.edu/confluence/download/attachments/4437735/12.4.2.ss?version=1&modificationDate=1296057878550&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437735/12.4.2.ss?version=1&modificationDate=1296057878550&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437735/WordList.dj1?version=1&modificationDate=1296057878517&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437735/ComparableList.dj1?version=1&modificationDate=1296057878525&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437735/ObjectList.dj1?version=1&modificationDate=1296057878539&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437735/ArithExpr.dj1?version=1&modificationDate=1296057878532&api=v2

1.
a.
b.

2.
a.
b.

class ConsList implements List {

 ...
 // In a method of the ConsList...
 return rest.helper(this); // delegate to rest and let it decide what to do.
 }

 /**
 * Helper method. If this method is called, we know that the parent is NOT the last element!
 * @param parent A reference to the parent list, i.e. the caller.
 */
 Object helper(ConsList parent) {
 // Parent is NOT the last element, process the *parent* accordingly.
 }
}

class EmptyList implements List {
 ...

 /**
 * Helper method. If this method is called, we know that the parent is IS the last element!
 * @param parent A reference to the parent list, i.e. the caller.
 */
 Object helper(ConsList parent) {
 // Parent IS the last element, process the *parent* accordingly.
 }
}

This code is longer, but safer, more robust and more extensible.

But Wait, There's More!

How could you extend the delegation ideas in the above technique to enable you to differentiate between the follow four scenarios involving two lists?

One list is empty and
the other list is empty or
the other list is non-empty

One list is non-empty and
the other list is empty or
the other list is non-empty

	211hw8_S11

