
1.

2.

1.

2.
3.

4.

5.

211lab09_S11
Lab 09 – List Visitors

Setting up a DrJava Project

DrJava has the ability to create "projects" which enable you to efficiently manage the large numbers of source and compiled files that a Java application
involves. A good project structure separates the source code from the compiled code and enables the user to work open all the required source files at
once and to easily add/delete/edit them.

A DrJava project involves several pieces:

A well-defined directory (folder) structure:
Project directory, containing the DrJava project file and below it:

" " -- the "source" directory which holds the " " filessrc XXX.java
" " or "bin" directory which holds the compiled " " filesclasses XXX.class

The DrJava (" ") file, which holds the information about what files are in the project and other project-related data.XXX.drjava

To set up a DrJava project:

On your hard disk, create a folder to hold your project, e.g. " ". It's easiest to build the " " and " " subdirectories at this point, or Lab09 src classes
you can wait until step 4 below.
Click on Project/New
Browse to the project folder and save your DrJava project file with an appropriate name, e.g. " " (DrJava will automatically add the Lab09.drjava
file extension).
 In the dialog that comes up, fill out the following fields. You will need to click the " " button to browse to and create Project Properties ...
the directories if they do not already exist.

Project Root = e.g. " "[project folder]\src U:\Comp211\Lab09\src
Build Directory = e.g. " "[project folder]\classes U:\Comp211\Lab09\classes
Working Directory = e.g. " "[project folder]\classes U:\Comp211\Lab09\classes

Leave the rest of the fields blank for now and click " "Ok

To open a project, click on " " in DrJava and browse to your project file. If your computer is set up to do it, you might Project/Open... XXX.drjava
also be able to automatically open a DrJava project by simply double-clicking the project file.

To turn in your project-based work, simply zip up the and submit the zip file.entire project folder

Limitations of the Interpreter Design Pattern

Up until now, each time we want to compute something new, we apply add appropriate methods to IntListand implement those the interpreter pattern
methods in EmptyIntListand ConsIntList.This process of extending the capability of the list structure is error-prone at best and cannot be carried out if one
does not own the source code for this structure. Any method added to the system can access the private fields of EmptyIntListand ConsIntListand modify
them at will. In particular, the code can change _first and _rest of ConsIntListbreaking the invariant immutable property the system is supposed to
represent. The system so designed is inherently fragile, cumbersome, rigid, and limited. We end up with a forever changing IntListthat includes a multitude
of unrelated methods.

These design flaws come of the lack of delineation between the intrinsic and primitive behavior of the structure itself and the more complex behavior
needed for a specific application. The failure to decouple primitive and non-primitive operations also causes reusability and extensibility problems. The
weakness in bundling a data structure with a predefined set of operations is that it presents a static non-extensible interface to the client that cannot handle
unforeseen future requirements. Reusability and extensibility are more than just aesthetic issues; in the real world, they are driven by powerful practical
and economic considerations. Computer science students should be conditioned to design code with the knowledge that it will be modified many times. In
particular is the need for the ability to add features the software has been delivered. Therefore one must seek to the data structures from after decouple
the algorithms (or operations) that manipulate it. The Visitor Design Pattern is an object-oriented approach to address this issue.

The Visitor Design Pattern

The visitor pattern is a pattern for communication and collaboration between two union patterns: a "host" union and a "visitor" union. An abstract visitor is
usually defined as an interface or an abstract class in Java. It has a separate method for each of the concrete variant of the host union. The abstract host
has a method (called the "hook") to "accept" a visitor and leaves it up to each of its concrete variants to call the appropriate visitor method. This
"decoupling" of the host's structural behaviors from the extrinsic algorithms on the host permits the addition of infinitely many external algorithms without
changing any of the host union code. This extensibility only works if the taxonomy of the host union is stable and does not change. If we have to modify the
host union, then we will have to modify ALL visitors as well! The following is diagram showing the overall architecture of the visitor design pattern. This
type of diagram is called the UML (Unified Modeling Language) class diagram.

Applied to the list structure, the visitor pattern takes the following coding pattern. The clarity following code is simplified as the Functional Java language
level would accept. The Full Java language level code, including the project structure and alternative implementations, can be downloaded here: Lab09.
zip

https://wiki.rice.edu/confluence/download/attachments/4437740/Lab09.zip?version=3&modificationDate=1300808273976&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437740/Lab09.zip?version=3&modificationDate=1300808273976&api=v2

1.
a.
b.

2.
3.
4.
5.

/**
 * Abstract list structure.
 */
abstract class IntList {
 abstract Object accept(IntListVisitor v);

 ConsIntList cons(int n) {
 return new ConsIntList(n, this);
 }
}

/**
 * Concrete empty list structure containing nothing.
 */
class EmptyIntList extends IntList {
 Object accept(IntListVisitor v) {
 return v.forEmptyIntList(this);
 }
}

/**
 * Concrete non-empty list structure containing an int, called first,
 * and a rest, which is a list structure.
 */
class ConsIntList extends IntList {
 int first;
 IntList rest;

 Object accept(IntListVisitor v) {
 return v.forConsIntList(this);
 }
}

/**
 * Abstract operation on IntList.
 */
interface IntListVisitor {
 Object forEmptyIntList(EmptyIntList host);
 Object forConsIntList(ConsIntList host);
}

Here the host structure is IntListand its concrete subclasses, and the visitor is any extrinsic operation to be performed on the IntListhost. Instead of adding
methods to IntListto perform additional operations, we write visitors.

NOTE: Visitors that take no arguments should be written as Singletons.
We now translate code we wrote using the interpreter pattern on IntListin previous labs using visitors instead.

List Visitor Exercises

Write a visitor called Length to compute the length of an IntList.
Write a non-tail recursive version (using direct recursion).
Write a tail-recursive version using a helper visitor (in place of a helper method).

Write a visitor called that returns the product of the number in the list, using a tail recursive helper visitor.ProdNums
Write a visitor called that reverses the list using a tail-recursive helper visitor.Reverse
Write a visitor called that uses as tail recursive visitor as done in the method listString.ListString
Write a visitor called that returns a list consisting of the input list and its mirror around the last element, using a (non tail-MakePalindrome
recursive) helper with an accumulator. For example, returns the list .(1, 2, 3).accept(MakePalindrome.ONLY) (1, 2, 3, 2, 1)

	211lab09_S11

