
hw10details_S11
HW10 Code Details

 Most of the supplied code is support code that you do not have to worry about. You are certainly free to use whatever
you wish, but only the classes listed here should be needed.
You WILL need to make anonymous inner classes and possibly some named classes if you feel you need them. The
staff's solution only uses anonymous inner classes, so it definitely can be done that way.
 In viewing the UML diagrams below, keep in mind that a class or interface always inherits all of the methods of its
parents, i.e. everything above it. Just because a class or interface only shows 2 methods in its little box in the UML
diagram doesn't mean that's all the methods it has--look at all the methods in its superclasses/superinterfaces too!
Don't forget to import a package before attempting to use any of its classes.
Check the Javadoc comments of each class to learn more about what each class does.

Student Package

A student is wearing a shirt, pants and socks. The student also has references to several lists (ordered piles) of garments: clean shirts, clean pants,
clean socks, a dirty clothes pile and a laundry room which is a list of list of garments because it represents the collection of multiple loads of laundered
garments that have been cleaned, but not yet folded and returned to the individual clean garment piles.

The class includes:Student

the name of the student,
the closet shelf with its piles of clean clothes,
the dirty laundry pile, and
the laundry room with its piles of laundered garmets sitting on tables.
and methods to manipulate those data representations to perform the specified simulation

1.
2.
3.
4.

Garment Package

 Garments are of 4 types:

Shirt - represents shirts of various types
Pants - represents pants of various types
Socks - represents socks of various types
NullGarment - represents the absence of a garment, such as one might get on a failed search for a garment.

All have an " " field that is used to differentiate different instances of and and , e.g. a "blue" Shirt vs. a "red" Garments adjective Shirts Pants Socks
Shirt.

Garments support a visitor, , which has cases for each type of visitor. GarmentVisitor NEVER test for the type of a Garment object! Always
 by having the garment object accept a visitor whose different cases provide the garment-type-dependent processing you desire.delegate to it

AGarmentVisitor is a convenience class that provides concrete default behavior for all the cases. If you only need to specify one or two cases and
just return a default value for the rest, create your visitor by sub-classing and overriding only the cases you desire. Note that the AGarmentVisitor AGa

's constructor requires an input parameter, the default value to use for the non-overridden cases.rmentVisitor

 Here's an example of using to write a little visitor to return either "Not a Sock!" or "Got some socks!" depending on whether the visitor AGarmentVisitor
is accepted by a object or some other kind of object.Socks Garment

GarmentVisitor isSockGarmentVisitor = new AGarmentVisitor<String>("Not a Sock!") {
 public String forSocks(Socks sockHost) {
 return "Got some socks!";
 }
}

aShirt.accept(isSockGarmentVisitor) --> "Not a Sock!"
aPants.accept(isSockGarmentVisitor) --> "Not a Sock!"
aNullGarment.accept(isSockGarmentVisitor) --> "Not a Sock!"
aSock.accept(isSockGarmentVisitor) --> "Got some socks!"

The is a utility visitor that can be used to return a true or false if two objects are the same type, i.e. a and a SameTypeGarmentVisitor Garment Shirt
 or a and a , of their " ". Shirt Pants Pants regardless adjectives

Lists package

BiLists are used to represent the various piles of clothes or a collection of piles of clothes (the laundry room).

Using :BiList

BiList<Garment> is a pile of clothes.
insertFront() and are the methods to insert and remove from the top of the pile respectively.remFront()
insertRear() and are the methods to insert and remove from the bottom of the pile respectively.remRear()
newIterator() is a factory method that will create an iterator for you specifically for that list, initialized to point at the first (top) element of the
list. Do NOT try to make an iterator by instantiating one yourself!

{[BiLists}} () accept that can be used to perform operations that depend on the super-interface BiListI actually BiListIVisitors
whether the list is empty or not. That is, has 2 cases, and . BiListIVisitor forEmpty forNonEmpty
BiLists also have an method that can be used for imperative/procedural-style conditional processing based on the list's isEmpty()
emptiness. Using a delegation-style processing using the is recommended however and will result in cleaner code in some BiListIVisitor
cases.

Using the iterator a creates:BiIteratorI<Garment> BiList<Garment>

The will initialized the iterator to point to the top of the list.BiList
atEnd() will return true if you are at the end of the list, so your while loop's conditional should have something like "while(!myIterator.

}" atEnd()) {....
Read the data at the current iterator location by using . currentItem()
The iterator, unlike most iterators in the world, supports mutation, so and will mutate the list at the current iterator insert() remove()
location. Be VERY CAREFUL when advancing the iterator after these operations or you will skip elements!!
Typically, a call to will be used to advance the iterator one element towards the bottom of the pile.next()
You can iterate backwards through the list by using the method rather then . You'll need to initialize the iterator at the bottom of prev() next()
the pile (end of the list) by first calling the method to set the iterator to the end of the list. The loop conditional should be something like last() !

.myIterator.atStart()

BiListUtil is a singleton that provides utility methods that you might find useful for various operations on your lists. It is also a handy source of
examples on how to use the and their iterators.BiLists

Command package

 objects (not to be confused with the Command Design Pattern) are "messages" (in OO parlance) sent to the laundry simulation system to effect Command
particular operations. These operations are described in detail in the previous wiki page. There is one sub-class corresponding to each type of Command
operation the simulation supports, namely an query, a new item, a particular type of garment worn, a specific Outfit Receive Garment Change Lose G

, the pile of dirty clothes (to with maximum bounds), and a pile of clean clothes and return them to their clean piles.arment Launder Fold

Every object can accept a which has cases for each possible type of . Command CommandVisitor Command

DoCommandVisitor is the visitor that you have to write (fill in the missing code) for this assignment. Other than the field, your implementation student
may have additonal fields and private utility methods that you decide you need for your implementation. Thus, your DoComandVistor may appear slightly

. different than what is shown here

The field in will give you access to the various clothes piles, what the student is currently wearing and the laundry room. student DoCommandVisitor Y
 The supplied simulation infrastructure already does that for you.ou do NOT have to code up the instantiation of the DoCommandVisitor!

A word of explanation: A big deal was made in class and lab about how one should never have fields because they allow uncontrolled public
mutations to occur. You've problaby noticed the public field in some of the subclasses here. For convenience's sake, we're exploiting garment Command
the fact that never need to be mutated (so far as we know). The field in the , and commands is marked Commands garment Receive Lose Change final
, which makes it immutable. So, we can get away with a field because the field is immutable. That said, in general, using an accessor method to public
explicitly control access to a class's data is still the preferred technique.

The Graphical User Interface (GUI)

The initialization of the GUI creates an Acker Student object and associated DoCommandVisitor. Each GUI event triggers the execution of
DoCommandVisitor; in some cases, such as reading input from a file, it triggers the execution of DoCommandVisitor on a stream of Commands. In
essence, the event-handling loop built-in to the Java Swing framework is used to drive the computation rather than a separate loop in the main thread such
as the one in the simulate method in Student.

The GUI could also have been written as an implementation of the IOProcess interface. This approach, which conforms to the classic "model-view-
controller" (MVC) pattern, is more flexible because it decouples the GUI (the view in MVC terminology) from the model, but it is also more complex
because it involves the cooperative execution of
two loops in separate threads--a main program loop in the simulate method of Student and the loop driving the event-handling thread supporting the
processing of GUI inputs. The SimLaundryApplication dispenses with the main program loop by absorbing the application (the model) into the GUI (the
view).

Addtional Technical Information

Our supporting framework includes an input processor that reads event commands from the input stream and returns high level data representations for
these commands. The input processor can also print debugging output describing the state of your simulation before each command is performed. To
communicate with your code, the input processor uses four interfaces:

IOProcess which describes the visible methods supported by the input processor;
StudentEnvironment which describes methods for inspecting the state of Acker's environment;
EnumI which describes methods for inspecting (but not mutating!) lists within Acker's environment; and
ReadIteratorI which includes methods for moving a cursor through lists implementing the interface.EnumI

The interfaces are already defined in the framework provided by the course staff.

The input processor class implements the interface. You are welcome to inspect the code of but it relies heavily TerminalIO IOProcess TerminalIO
on the Java I/O library, particularly the class . To understand this code, you will need to read Chapter 11 of JLS (or similar reference). StreamTokenizer
The framework also includes implementations of and as part of a (mutable circular doubly linked list) class EnumI ReadIteratorI BiList
implementation.

The program includes two class definitions defining unions (composites without recursion): , specifying the representation of garments that Garment
appear in the input stream, and , specifying the representation of event description commands. Both classes include the hooks required to Command
support the visitor pattern. The data definition for is important because the graphical version of the user interface included in the framework Garment

animates the state of your implementation before each command. This graphical user interface (GUI) expects the garments that appear as elements in
lists (as revealed by the and interfaces) to be instances of the class. Hence, you must use the representation of EnumI ReadIteratorI Garment
garments that our class provides.Garment

The interface includes a method which initializes an IOProcess PrintStream open(StudentEnvironmenta, boolean debug) IOProcess
object for a laundry simulation of the specified environment and returns the object to be used for terminal output. (Up to now you have PrintStream
implicitly used the object .) The method prints the string followed by a newline PrintStream System.out PrintStream println(String s) s
character to the . The argument indicates whether or not debugging output should be produced. The PrintStream boolean debug IOProcess
interface also includes a method which reads the next command from the input channel supported by the object.nextCommand IOProcess

Each call on returns the next command in the stream provided by the object, until it reaches an end-of-file (nextCommand IOProcess <control>-d
from the keyboard). End-of-file is reported as a null reference of type .Command

The method in processes character strings consisting of words separated by ``space'' characters such as and . A nextCommand TerminalIO ' ' '\n' w
 is any sequence of printable characters other than space, (newline), and . (return). An must be a single word. An ord '\n' '\r' adjective article

must be one the words , , or . The same adjective, say may be applied to garments of different types, but there are no shirt pants socks argyle
duplicate items of clothing.

The program passes a boolean debug to (). The value of the flag is true iff the command line argument or is passed to flag TerminalIO -d -debug main
.

	hw10details_S11

