
211lab12_S11

Lab 12: Graphical User Interfaces (GUI's) in Java

For most of the relevant Information on how to build GUIs in Java, see the following reference: Java GUI Programming
Primer

The content below discusses material not explicitly covered in the above reference.

Few people code GUI's by hand these days--it's just too complicated. Typically, one would use a "GUI builder" to drag-and-drop GUI components onto a
design canvas, greatly simplifying and speeding up the GUI creation process. But it is very helpful to know the basics of how to build a GUI by hand
because one often needs to go in an manually tweak the GUI code even when using a sophisticated GUI builder tool.

Basic structure of a simple GUI application:

http://www.clear.rice.edu/comp310/JavaResources/GUI/
http://www.clear.rice.edu/comp310/JavaResources/GUI/

import java.awt.*;
import javax.swing.*;
import java.awt.event.*;

class MyGUIApp extends JFrame {

 // Use fields for GUI components that need to be referenced outside of the GUI initialization process
(initGUI)

 /**
 * Constructor for the GUI.
 */
 public MyGUIApp() {
 // initialize fields here. Surrounding your code in a protective try-catch is recommended.

 setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE); // Causes the application to end if the GUI frame is
closed.
 initGUI(); // initialize the GUI components
 }

 /**
 * Actually start the GUI
 */
 public void start() {
 // Do any last second initializations, if needed.
 setVisible(true); // Make the GUI visible
 }

 /**
 * Initialize the GUI components
 */
 private void initGUI() {
 Container contentPane = getContentPane(); // all GUI components are added to the frame's ContentPane.
 // You can also just call the accessor each time as well and
not use a local variable.

 // instantiate, initialize and connect all the GUI's components here.
 // Don't forget to add them to the container that holds them, e.g. the ContentPane.

 }

 /**
 * Main method that starts the app.
 * In general, this would not be in this class but rather in a separate "controller" class
 * with slightly different coding (as required for a true Model-View-Controller system).
 * We put it here for now, for simplicity's sake only.
 */
 public static void main(String[] args) {
 // initialize and start the GUI on the GUI thread.
 SwingUtilities.invokeLater(new Runnable() {
 public void run() {
 MyGUIApp view = new MyGUIApp(); // instantiate the GUI but don't show it yet.
 // Model classes would be instantiated here plus any other required objects.
 view.start(); // Start the application by making the GUI visible.
 }
 });
 }
}

Some typical GUI initializations:

Set title and size of the frame:

setTitle("My Incredible GUI App"); // set the frame's title
setSize(400, 300); // set frame size to 400x300

Panels in main frame:

 JPanel controlPnl = new JPanel();
 controlPnl.setBackground(Color.BLUE); // Set panel color to blue
 contentPane.add(controlPnl, BorderLayout.NORTH); // Fixed-size panel for control components, e.g. buttons,
textfields, etc, at the top of the frame.

 JPanel displayPnl = new JPanel();
 contentPane.add(displayPnl, BorderLayout.CENTER); // Adjustable-size panel for display components, e.g. text
areas, etc, in the middle of the frame.

A Button with a listener on the control panel:

JButton runBtn = new JButton("Run!");
runBtn.addActionListener(new ActionListener() {

 /**
 * This method runs when the button is clicked.
 */
 public void actionPerformed(ActionEvent evt) {
 // Do stuff here. Generally, delegate to a non-GUI object (the "model").
 }
 });
controlPnl.add(runBtn);

A Label and a TextField with a listener on the control panel:

 JLabel infoLbl = new JLabel();

 infoLbl.setText("Enter text here:");
 controlPnl.add(infoLbl);

final JTextField infoTF = new JTextField("default text"); // don't need "final" below if this line was
defining a field instead of a local variable.
infoTF.setPreferredSize(new java.awt.Dimension(75, 23)); // set default text field size to 75x23 pixels.
infoTF.addActionListener(new ActionListener() {

 /**
 * This method runs when "Enter" is pressed after entering text into the text field.
 */
 public void actionPerformed(ActionEvent evt) {
 String text = infoTF.getText(); // the text of the text field.
 // Do stuff here. Generally, delegate to a non-GUI object (the "model").

 }
 });

controlPnl.add(infoTF);

 A text area with scroll bars in the center of the frame:

JScrollPane scrollPn = new JScrollPane();
contentPane.add(scrollPn, BorderLayout.CENTER); // No center panel needed. ScrollPane added directly to frame.
JTextArea displayTA = new JTextArea("initial text");
scrollPn.setViewportView(displayTA); // put the text area in the scroll pane

SerialVersionUID compiler warning:

A very common compiler warning to receive is the following for your frame class and other customized GUI components:

The serializable class XXX does not declare a static final serialVersionUID field of type long

If you do, add the following field to the class:

private static final long serialVersionUID = 42L; // Use a random, unique integer value here

For more information, see this . web page

http://www.clear.rice.edu/comp310/JavaResources/serialVersionUID.html

	211lab12_S11

