
HW07-alt
Homework 7 (Due 11:59pm Tuesday, October 27, 2020)
Submit via SVN

Preliminaries
This homework can be done using the Functional language level of DrJava, which autogenerates the constructors, accessors, equals, and toString()
methods on the assumption that the class narrowed to its fields constitutes a free algebraic type.

Composite Design Pattern for List
The following is an object-oriented formulation of lists of integers.

IntList is an abstract list of .int
EmptyIntList is an IntList
ConsIntList(first, rest), where is an and is an , is an first int rest IntList IntList

The above can be implemented in functional Java (as supported by the DrJava functional language level as follows.

/** Abstract list structure. IntList := EmptyIntList + ConsIntList(int, IntList) */
abstract class IntList { }

/** Concrete empty list structure containing nothing. */
class EmptyIntList extends IntList { }

/** Concrete non-empty list structure containing an int, called first, and an IntList called rest. */
class ConsIntList extends IntList {
 int first;
 IntList rest;
}

The above implementation is an example of what is called the . The composite design pattern is a special case of the union Composite Design Pattern
pattern where one or more of the variants for the union type T contains fields of root type T. In this pattern, the union is called a composite. Here the union
type is and the variant is said to be a composite because it includes a field of type .IntList ConsIntList IntList

The composite pattern also prescribes a coding pattern for the its methods: when a variant is called to perform an operation, it traverses its fields of root
type and calls on them to perform the same operation. It allows a client to treat an instance of type T and it embedded instances uniformly using
polymorphism.

This coding pattern is called the interpreter design pattern: it interprets the abstract behavior of a class in each of its concrete subclasses. The composite
pattern refers to the the structure of the composite type hierarchy, while the interpreter pattern refers to how the behavior of the variants of the type are
defined uniformly via polymorphism.

Interpreter Design Pattern for List
The interpreter design pattern applied to the above composite list structure prescribes a coding pattern for list operations that is analogous to Racket
function template. It entails declaring an abstract method for each list operation in the abstract list class, , and defining corresponding concrete IntList
methods in the concrete list subclasses: the empty list class, , and the non-empty class, . The concrete method for EmptyIntList ConsIntList EmptyIn

 corresponds to the base case in the Racket function template while the concrete method in corresponds to the recursive case by tList ConstIntList
calling the same method on its rest.

The following is the coding template for the interpreter design pattern for and its subclasses.IntList

abstract class IntList {
 abstract returnType methodName(parameter_list);
}

class EmptyIntList extends IntList {
 returnType methodName(parameter_list) {
 // base case code
 }
}

class ConsIntList extends IntList {
 int first;
 IntList rest;
 returnType methodName(parameter_list) {
 // ... first ...
 // ... rest.methodName(parameter_list) ...
 }
}

Problems
Apply the interpreter design pattern to and its subclasses given above to write all of the following methods as augmentations (added code) of the IntList

 class. Also write a JUnit test class, to test all of your new methods in the class. We strongly recommend that you write IntList IntListTest IntList
Template Instantiations for all of these new methods as an intermediate step in developing your code these Template Instantiations BUT DO NOT submit
(or corresponding Templates) as part of your code documentation. The structure of your program implicitly provides this information. Confine your
documentation to writing contracts (purpose statements in HTDP terminology) using javadoc notation (opening the purpose statement (preceding the
corresponding definition)with /** and closing it with */.

(10 pts.) : returns true if key is in the list, false otherwise.boolean contains(int key)
(10 pts.) : computes the length of the list.int length()
(10 pts.) : computes the sum of the elements in the list.int sum()
(10 pts.) : computes the average of the elements in the list; returns 0 if the list is empty.double average()

: you can an to by using the prefix operator .Hint cast int double (double)
(10 pts.) : returns a list of elements in this list that are less or equal to .IntList notGreaterThan(int bound) bound
(10 pts.) : returns a list of all elements in this list that are not equal to .IntList remove(int key) key
(10 pts.) : returns a list of all elements in this list with replaced by .IntList subst(int oldN, int newN) oldN newN
(30 pts.) merges this list with the input list other, assuming that this list and other are sorted in ascending IntList merge(IntList other)
order. Note that the lists need not have the same length.

: add a method that does all of the work if one list is non-empty (a). Only is Hint mergeHelp(ConsIntList other) ConsIntList mergeHelp
recursive. Use dynamic dispatch on the list that may be empty. Recall that is equivalent to . This approach is the Java a.merge(b) b.merge(a)
analog of the extra credit option in HTDP Problem 17.6.1 in HW 3.

	HW07-alt

