
1.

a.
b.

c.

2.

HW4-2022
Homework 4 (Due Monday 9/29/2022 at 11:59pm)
To submit this assignment, simply upload the files in your GitHub repository to you GitHub Classroom repository for this assignment (as you have done for
earlier assignments). In contrast to Assignments 1 and 2 where you could put the programs for all problems in a single file (HW01.rkt for Assignment 1
and HW02.rkt for Assignment 2), you must store the solution to each problem in a separate file, namely , , , .rkt HW04-1.rkt 2.rktHW04- 3.rktHW04-
and (if you do the extra credit problem) for problems 1, 2, 3, and 4 (extra credit). Unfortunately, none of the languages supported by 4.rktHW04-
DrRacket allow these files to be combined. The Racket language allows top-level identifiers (variable names) to be redefined, but it does Pretty Big not
support . All of the student languages—which are the only ones that support prohibit redefinition of identifiers.check-expect check-expect—

Embed any answer text that is not executable in a DrRacket block comment or block commenting brackets (#| and |#).

Use the language.Intermediate Student with lambda

Given the Racket structure definitions:

(define-struct sum (left right))
(define-struct prod (left right))
(define-struct diff (left right))
(define-struct quot (left right))

an A is either:rithExpr

a number ,n
a sum ,(make-sum ae1 ae2)
a product ,(make-prod ae1 ae2)
a difference , or(make-diff ae1 ae2)
a quotient (make-quot ae1 ae2)

where is a number (as defined in Racket), and and are A s.n ae1 ae2 rithExpr

The following 4 exercises involve the data type A . If you are asked to write a function(s), follow the design recipe: contract, purpose, examplesrithExpr
/tests, template instantiation, code, testing (which happens automatically when the examples are presented using). Follow the (check-expect ...)
same recipe for any help function that you introduce. You may use any of the library functions shown in class lectures including .append

 (40 pts.) Write an evaluator for arithmetic expressions as follows:
Write the (function) template for ArithExpr
Write a function that maps an A to the corresponding "list" representation in Racket. Numbers are unchanged. to-list rithExpr
Some other examples include:

(to-list 12) => 12
(to-list (make-sum (make-prod 4 7) 25)) => '(+ (* 4 7) 25)
(to-list (make-quot (make-diff 4 7) 25)) => '(/ (- 4 7) 25)

Notes:

The notation abbreviates .'(+ (* 4 7) 25) (list '+ (list '* 4 7) 25)
You need to define the output type (named RacketE) for this function, but you can omit the template because this xpr
assignment does not include any functions that process this type. There are several mathematically distinct definitions that are
correct. Some are more restrictive (narrower) than others but all our correct.
The notation abbreviates .'(+ (* 4 7) 25) (list '+ (list '* 4 7) 25)

Write a function that evaluates an A . Your evaluator should produce exactly the same eval: ArithExpr -> number rithExpr
result for an A that Racket evaluation would produce for the list representation .rithExpr E (to-list E)

 (40 pts.) Extend the definition of A as follows:rithExpr
Add a clause for variables represented as Racket symbols.
Write the (function) template for this extended definition; it should similar to your template for from Problem 1.ArithExpr
Modify your definition of to support the expanded definition of .to-list ArithExpr
Given the Racket structure definition:

(define-structure binding (var val))

a is where is a symbol and is a number. An is a . Write a binding (make-binding s n) s n environment (list-of binding)
(function) template for processing an .environment
Define a top-level variable that is bound to the empty environment containing no bindings (, the empty list). Note that empty-env i.e. em

 is really a constant since variables cannot be rebound in our functional subset of Racket.pty-env
Write a function that takes environment , a symbol , and a number , and returns an extended environment identical to extend env s n env
except that it adds the additional binding of to .s n
The definition of is trivial; it requires no recursion. As a result, satisfies the invariantextend extend

2.

3.

4.

(check-expect (extend empty-env s n) (list (make-binding s n)))

where is any symbol and is any number. Hence,s n

(extend empty-env 'a 4) => (list (make-binding 'a 4))

In the remainder of the problem, use and to define example environments for test cases.empty-env extend
Write a function that takes a symbol and an environment and returns the first in with a component that lookup s env binding env var
equals . If no match is found, returns empty. Note that the return type of is not simply because it can return s lookup lookup binding e

. Define the a new union type called for the the return type. You do not need to write a template for this type mpty option-binding
since it is trivial.
Write a new function for the expanded definition of A . The new takes arguments: an A to eval rithExpr eval two rithExpr E
evaluate and an specifying the values of free variables in . For example,environment env E

(eval 'x (extend empty-env 'x 17)) => 17
(eval (make-prod 4 7) (extend empty-env 'x 17)) = 28
(eval 'y (extend empty-env 'x 17)) => some form of run-time error

If an A contains a free variable that is not bound in the , then will naturally produce rithExpr E environment env (eval E env)
some form of run-time error if you have correctly coded . Do explicitly test for this form of error.eval not

 (20 pts.) An is really a finite function (a finite set of ordered pairs). It is in the sense that it can be completely defined by a environment finite
finite table, which is not true of nearly all the primitive and library functions in Racket (and other programming languages). Even the identity
function is finite. For the purpose of this exercise, we redefine the type as .not environment (symbol -> option-binding)

Rewrite to use defined as a finite function in instead of as a eval environment (symbol -> option-binding) (list-of
. If you cleanly coded your definition of in the preceding problem using , , and ,option-binding) eval lookup make-binding extend

all that you have to do to your solution to the previous problem is redefine the bindings of , , and , and revise lookup empty-env extend
your test cases for . You can literally copy the entire text of your solution to problem 2; change the definitions of , extend lookup empty-

, and ; update your documentation (annotations) concerning the type; and revise your tests for . env extend environment extend
Note that cannot be tested (since the result is a function!) without using to examine it. (Note: if you wrote a correct extend lookup
solution to problem 2, you can do this problem is less than 15 minutes!)

 you can use -notation in Racket to define a constant function for , and can be defined as a functional Hint: lambda empty-env extend
that takes a function (representing an environment) and adds a new pair to the function--using a embedded inside a -if lambda
abstraction.

Extra Credit (50 pts.) Add support for -expressions in your evaluator from Problem 2 as follows:lambda
Extend the definition of A by adding a clause for unary and a clause for of an ArithExpr -abstractionslambda unary applications rit

 to an A . Use the name for the structure representing a and the names and for the hExpr rithExpr lam -abstractionlambda var body
accessors of this structure. Use the name for the structure representing a and the names and for app unary application rator rand
the argument of this structure. Note that the of an is an A not a (which is a proper subtype of).rator app rithExpr lam ArithExpr
Write a (function) template for this additional expansion of the definition of A .rithExpr
Extend the definition of to support this expansion of the definition of A . You print the corresponding "concrete" to-list rithExpr
syntax that would be fed as input to a compiler. Hence,
 (to-list (make-lam 'x (make-plus 'x 'y))) => (list 'lambda (list 'x) '(+ x y)) = '(lambda (x) (+ x
y))
Extend the definition of to support this expansion of A . Note that can now return functions as well as numbers. eval rithExpr eval
Your biggest challenge is determining a good representation for function values. What does return as the value of a input? eval lam
That input may contain free variables. In principle, you could represent the value of the input by a revised (with no free lam lam
variables) obtained by substituting the values for free variables from the environment input (just like we do in hand-evaluation). But this
approach is tedious and computationally expensive. A better strategy is to define a structure type (called a) to represent a closure
function value. The structure type must contain the original and a description of what substitution (of values for identifiers) would lam
have been made, deferring the actual substitution just as defers substitutions by maintaining an environment.eval

	HW4-2022

