
HW5-2022
HW05

Homework 5: Symbolic Evaluation of Boolean Expressions
Due: 11:59pm, Thursday, Oct 13, 2022
200 points

Overview
Write a Racket function reduce that reduces boolean expressions (represented in Racket notation) to simplified form. For the purposes of this assignment,
boolean expressions (in input format to be parsed) are Racket expressions constructed from:

the boolean constants true and false ;
boolean variables (represented by symbols other than true, false, not, and, or, implies, and if) that can be bound to either true or false.
the unary operator not .
the binary operators and, or, and implies, and
the ternary operator if.

The course staff has provided functions parse and unparse in the file rkt that convert boolean expressions in Racket notation to a simple inductively parse.
defined type called BoolExp and vice-versa. The coding of parse and unparse is not difficult, but it is tedious (like most parsing) so the course staff is
providing this code rather than asking students to write it.
You may choose to write test procedures (Racket "functions" with side effects are more accurately called "procedures") that perform file I/O which is not
purely functional because reading and writing files modifies the contents of files in the file system which are effectively part of the program. Racket
procedures have exactly the same syntactic form as Racket procedures. In fact, the only difference between Racket functions and Racket procedures is
that the former do not involve any operations that are not functional. Writing test suites that read files is not required (or expected!) and will not directly
affect your grade. But it could conceivably foster more thorough testing improving the reliability of your code. The Racket procedures read: -> RacketExp is
a procedure of no arguments that reads a Racket expression from the console; .DrRacket pops up an input box to serve as the console when (read) is
executed. If you simply use the provided parse and unparse functions, you do not need to learn anything else about using I/O procedures in the Racket
library to read files containing unparsed (Racket-style syntax) Boolean expressions.
The provided parsing functions rely on the following Racket data definitions. Given

(define-struct Not (arg))
(define-struct And (left right))
(define-struct Or (left right))
(define-struct Implies (left right))
(define-struct If (test conseq alt))

a BoolExp is either:

a boolean constant and ;true false
a symbol representing a boolean variable;S
(make-Not)X where is a BoolExp;X
(make-And)X Y where and are BoolExps;X Y
(make-Or)X Y where and are BoolExps;X Y
(make-Implies)X Y where and are BoolExps; orX Y
(make-If)X Y Z where , , and are BoolExps.X Y Z

A BoolRacketExp is either:

a boolean constant or ;true false
a symbol ;S
(list 'not)X where is a BoolRacketExp ;X
(list op)X Y where op is , , or where and are BoolRacketExps;'and 'or 'implies X Y
(list 'if)X Y Z where , , and are BoolRacketExps.X Y Z

The provided functions and have the following signatures.parse unparse

: BoolRacketExp -> BoolExpparse
: BoolExp -> BoolRacketExpunparse

#

Your solution must support the types BoolExp and BoolRacketExp because our grading tests will use data values of these types. The intended solution to
this assignment is purely functional. The class solution is purely functional.
The stub file HW05.rkt in your initial Assignment 5 repository includes four tests of the reduce function including one rather large formula (bound to the
variable bigE) that reduces to true. This test is provided so that you can easily test the scalability of your solution. Of course, you will need to write
comprehensive test suites (typically involving small inputs) for each of your top-level program functions. All non-trivial auxiliary functions should be tested
at the top-level.
Create your solution by modifying the file HW05.rkt. You will obviously need to incorporate the code in parse.rkt. A good solution to this problem will
include much more comprehensive test data for all functions, including some much larger test cases for reduce. The normalize function is difficult to test on
large data because the printed output for some important normalized trees (represented as DAGs (Directed Acyclic Graphs) in memory but fully expanded
when printed) is so large.
Given a parsed input of type BoolExp , the simplification process consists of following four phases:

Conversion to IfForm implemented by the function .convertToIf
Normalization implemented by the function .normalize
Symbolic evaluation implemented by the function .eval
Conversion back to conventional boolean form implemented by the function .convertToBool

The function takes a BoolRacketExp as input, parses it, simplifies it (as described above), and unparses the simplified result. Hence, reduce reduce
maps BoolRacketExp to BoolRacketExp.
A detailed description of each of the four phases of the simplication process follows.

Conversion to IfForm
A boolean expression (BoolExp) can be converted to if form (a boolean expression where the only constructor is) by repeatedly applying the make-If
following rewrite rules in any order until no rule is applicable.

(make-Not) => (make-If false true)X X
(make-And) => (make-If false)X Y X Y
(make-Or) => (make-If true)X Y X Y
(make-Implies) => (make-If true)X Y X Y

In these rules, and denote arbitrary BoolExps}. The conversion process always terminates (since each rewrite strictly reduces the number of logical X Y
connectives excluding and yields a unique answer independent of the order in which the rewrites are performed. This property is called the make-If
Church-Rosser property, after the logicians (Alonzo Church and Barkley Rosser) who invented the concept.
Since the reduction rules for this phase are Church-Rosser, you can write the function using simple structural recursion. For each of the convertToIf
boolean operators And, Or, Not, Implies, and If, reduce the component expressions first and then apply the matching reduction (except for If for which
there is no top-level reduction).
The following examples illustrate the conversion process:

(check-expect (convertToIf (make-Or (make-And 'x 'y) 'z)) (make-If (make-If 'x 'y false) true 'z))
(check-expect (convertToIf (make-Implies 'x (make-Not 'y)) (make-If 'x (make-If 'y false true) true))

We suggest simply traversing the tree using the structural recursion template for type BoolExp and converting all structures (other than If) to the
corresponding if structures.
Write an inductive data definition and template for boolean formulas in if form, naming this type ifExp. (Note: is the only constructor, other than make-If
variables and constants, for ifExp.
The provided function : input BoolExp takes a Racket expression and returns the corresponding BoolExp.parse ->

Normalization
An ifExp is iff every sub-expression in test position is either a variable (symbol) or a constant (true or false). We call this type NormIfExp .normalized
For example, the ifExp is not a NormIfExp because it has an If construction in test position. In contrast, the (make-If (make-If)))X Y Z U V
equivalent ifExp is normalized and hence is an NormIfExp.(make-If (make-If) (make-If))X Y U V Z U V
The normalization process, implemented by the function : ifExp NormIfExp eliminates all if constructions that appear in test positions inside normalize ->
if constructions. We perform this transformation by repeatedly applying the following rewrite rule (to any portion of the expression) until it is inapplicable:

 => .(make-If (make-If))X Y Z U V (make-If (make-If) (make-If))X Y U V Z U V

This transformation always terminates and yields a unique answer independent of the order in which rewrites are performed. The proof of this fact is left as
an optional exercise.
In the normalize function, it is critically important not to duplicate any work, so the order in which reductions are made really matters. Do apply the NOT
normalization rule above unless and are already normalized, because the rule duplicates both and . If you reduce the consequent and the U V U V
alternative (and in the left hand side of the rule above) before reducing the test, normalize runs in linear time (in the number of nodes in the input); if U V
done in the wrong order it runs in exponential time in the worst case. (And some of our test cases will exhibit this worst case behavior.)

1.
2.

Hint: define a sub-function that takes three NormIfExps , , and and constructs a NormIfExp equivalent to . This head-normalize X Y Z (makeIf)X Y Z
help function processes because the test position must be a variable or a constant, yet can be an arbitrary NormIfExp. In contrast, X X (head-

 never even inspects and because they are already normalized and the normalizing transformations performed in normalize Z)X Y Y Z head-
 never place these expressions in test position.normalize

The following examples illustrate how the normalize and head-normalize functions behave:

(check-expect (head-normalize 'x 'y 'z) (make-If 'x 'y 'z))
(check-expect (head-normalize true 'y 'z) (make-If true 'y 'z))
(check-expect (head-normalize false 'y 'z) (make-If false 'y 'z))
(check-expect (head-normalize (make-If 'x 'y 'z) 'u 'v) (make-If 'x (make-If 'y 'u 'v) (make-If 'z 'u 'v)))
(check-expect (head-normalize (make-If 'x (make-If 'yt 'yc 'ya) (make-If 'zt 'zc 'za)) 'u 'v)
 (make-If 'x (make-If 'yt (make-If 'yc 'u 'v) (make-If 'ya 'u 'v)) (make-If 'zt (make-If 'zc 'u
'v) (make-If 'za 'u 'v))))
(check-expect (normalize true) true)
(check-expect (normalize false) false)
(check-expect (normalize 'x) 'x)
(check-expect (normalize (make-If 'x 'y 'z)) (make-If 'x 'y 'z))
(check-expect (normalize (make-If (make-If 'x 'y 'z) 'u 'v)) (make-If 'x (make-If 'y 'u 'v) (make-If 'z 'u
'v)))

Once a large formula has been normalized, do not try to print it unless you know that the formula is small! The printed form can be exponentially larger
than the internal representation (because the internal representation can share subtrees).
Before you start writing normalize, write the template corresponding to the inductive data definition of NormIfExp.

Symbolic Evaluation
The symbolic evaluation process, implemented by the function : NormIfExp environment NormIfExp, reduces a NormIfExp to simple form. In eval ->
particular, it reduces all tautologies (expressions that are always true) to true and all contradictions (expressions that are always false) to false.
Symbolic evaluation applies the following rewrite rules to an expression until none is applicable (with one exception discussed below):

(make-If true) => X Y X
(make-If false) => X Y Y
(make-If true false) => X X
(make-If) => X Y Y Y
(make-If) =>(make-If [<- true] [<- false])X Y Z X Y X Z X

The notation means with all occurrences of the symbol replaced by the expression . It is very costly to actually perform these [<-] M X N M X N
substitutions on NormIfExp data. To avoid this computational expense, we simply maintain a list of bindings (in essence, an as used in HW 4) environment
which are pairs consisting of symbols (variable names) and boolean values { , }. The following data definition definition formally defines the true false
binding type.

;; A binding is a pair (make-binding s v) where s is a symbol (a variable) and v is a boolean value (an element
of { true, false }.
;; An environment is a binding-list.

When the function encounters a variable (symbol), it looks up the symbol in the environment and replaces the symbol by it's boolean value if it exists.eval
These rewrite rules do not have the Church-Rosser property. The last two rewrite rules are the spoilers; the relative order in which they are applied can
affect the result in some cases. However, the rewrite rules do have the Church-Rosser property on expressions which are tautologies or contradictions. So
choose the ordering that makes the most logical sense (a subjective judgment)

If the final rule is applied only when X actually occurs in either Y or Z, then the symbolic evaluation process is guaranteed to terminate. (Without the
"actually occurs" restriction, the final rule can be applied repeatedly, never changing the formula.) With this constraint, every rule either reduces the size of
the expression (counting nodes) or the number of variable occurrences in it.
We recommend applying the rules in the order shown from the top down until no more reductions are possible (using the constraint on the final rule).

Notes:

The last rule can only be applied once to a given sub-expression if we comply with the constraint on its application.
All of the transformation rules map type NormIfExp to NormIfExp.

Conversion to Boolean Form

The final phase, performed by the function , converts an expression in normalized If form (an element of the type NormalizedIfExp) to an convertToBool
equivalent expression constructed from variables and { , , , , , , make-If}. This process true false make=And make-Or make=Not make-Implies
eliminates every expression of the form where one of the arguments { , , } is a constant { , }. (make-If)X Y Z X Y Z true false
Use the following set of reduction rules to perform this conversion:

(make-If false true) => (make-Not)X X
(make-If false) => (make-And)X Y X Y
(make-If true Y) => (make-Or)X X Y
(make-If true) => (make-Implies)X Y X Y

where , , and are arbitrary IfForms. This set of rules is Church-Rosser, so the rules can safely be applied using simple structural recursion.X Y Z

Grading

The 200 points of credit possible on this assignment will be partitioned
among the five functions you must write

convertToIf (10%)
normalize (20%)
eval (20%)
convertToBool (10%)
reduce (40%)

For each of these functions, you will be graded as described in ... including

the behavior of the functions (via unit testing using our correctness tests) and
the quality of your code (including tests) and your documentation (informal type definitions, templates and template instantiations, type contracts,
behavioral contracts)

You can assume that the definitions of types and their templates (but not the template instantiations for each function that you develop) (list-of ...)
are already given. You are expected to thoroughly test each function. A significant fraction of the grade for reduce will be determined by how well the
function scales to large inputs (performance as well as correct behavior).

	HW5-2022

