
CnC-Python Find Primes Example
First, we need to define the CnC graph:

FindPrimes.cnc

// Declarations
// The tag values are the odd numbers in the range [3..n]
<string oddNums>;

// The prime numbers as identified by the compute step
[string->int primes];

// Step execution
// The compute step may produce a prime number (in the form of a tag instance)
(compute) -> [primes];

// Step prescription
// For each oddNums instance, there is
<oddNums> :: (python compute);

// Input from the environment: initialize all tags
env -> <oddNums>;

// Output to the environment is the collection of the prime numbers
[primes] -> env;

The CnC graph states that is a Tag Collection with strings as the tags.oddNums
Currently, strings are the only supported tag types in CnC-Python.

Next, we define the Item Collection which has strings as tags and integer as its values. These types are defined in the format primes tagType-
 before the name of the Item Collection.>itemType

We define the implementation language of the Step in the Step prescription as in . In CnC-Python, python is the only allowable value. (python compute)
In future releases we plan to expan this value to include other languages such as C, C++, Fortran, Matlab, etc.

env is a special keyword representing the environment and in this example we define the environment will put string tags into the Tag Collection oddNums
and read the results from the Item Collection.primes

After defining the CnC graph, we need to run this file using the CnC-Python translator using the following command:
cnc_t FindPrimes.cnc

Running the command will generate the following directories: , , , , , and . In short, these hj-cnc-api sidl java-client py-lib user-code hj-main
are what the directories represent:

Directory
Name

Function

hj-cnc-
api

Wrapper classes for the HJ-CnC runtime used by Babel while generating SIDL server/client code

sidl SIDL files used by the program. This includes the SIDL file for the runtime wrapper classes as well as the Step and Item Collections for the current
program

java-
client

The java client generated from the SIDL files used by the HJ program to call into the python implementation

py-lib The generated python files that are invoked from the HJ program

user-code This is the only directory the user should need to edit. It will contain template files for the python Steps as well as an application class to attach start and
end event handlers. The even handlers are used to place values from the environment into Item Collections and read results back from Item Collections.

hj-main The generated HJ files that manages code to make native invocations into the python implementations using the Babel runtime. The user launches the
CnC-Python program using a generated script that invokes the generated HJ main class.

Back to the example, once the translator completes running there should be the following files in the directory:user-code

userFindPrimesApp.py.template

class Application:
 @staticmethod
 def onStart(args, oddNums):
 # TODO fill out the body of the function
 # e.g. operation on output item collections: anItemCollection.put(aTag, aValue)
 # e.g. operation on tag collections: aTagCollection.putTag(aTag)
 pass

 @staticmethod
 def onEnd(primes):
 # TODO fill out the body of the function
 # e.g. operation on input item collections: anItemCollection.get(aTag)
 # e.g. operation on input item collections: anItemCollection.printContents()
 pass

and

userComputeStep.py.template

class ComputeStep:
 @staticmethod
 def createAwaitsList(tupleContainer, tag):
 # TODO fill out the body of the function
 # e.g. tupleContainer.add(itemCollection, tagValue)
 # e.g. operation on item collections: anItemCollection.get(aTag)
 pass

 @staticmethod
 def compute(tag , outPrimes):
 # TODO fill out the body of the function
 # e.g. operation on input item collections: anItemCollection.get(aTag)
 # e.g. operation on output item collections: anItemCollection.put(aTag, aValue)
 # e.g. operation on tag collections: aTagCollection.putTag(aTag)
 return True

Rename both files to and . The provides the and userFindPrimesApp.py userComputeStep.py userFindPrimesApp.py onStart onEnd
functions. The function signatures are determined by detecting the environment interactions in the CnC graph. The function also provides access onStart
to any command line arguments used while launching the program. The file provides the file the user needs to edit to provide the userComputeStep.py
Step implementation. A Step needs to implement the and functions. The function allows the user to createAwaitsList compute createAwaitsList
specify the input data dependences on Item Collections. Once these dependences have been satisfied the function will be invoked.compute

Below are simple implementations for the two python files:

userFindPrimesApp.py

import time

class Application:

 startTime = 0
 endTime = 0

 @staticmethod
 def onStart(args, oddNums):
 # e.g. operation on output item collections: anItemCollection.put(aTag, aValue)
 # e.g. operation on tag collections: aTagCollection.putTag(aTag)
 if len(args) > 0:
 firstArg = args[0]
 print("py: processing " + firstArg)
 intValue = int(firstArg)

 Application.startTime = time.clock()
 for i in xrange(3, intValue, 2):
 oddNums.putTag(str(i))
 else:
 print("py: usage FindPrimesMain <num_items>")

 @staticmethod
 def onEnd(primes):
 # e.g. operation on input item collections: anItemCollection.get(aTag)
 # e.g. operation on input item collections: anItemCollection.printContents()

 Application.endTime = time.clock()
 elapsedTime = int((Application.endTime - Application.startTime) * 1000)
 print "py: Elapsed time:", elapsedTime, "ms"
 primes.printContents()

and

userComputeStep.py

class ComputeStep:
 @staticmethod
 def createAwaitsList(tupleContainer, tag):
 # e.g. tupleContainer.add(itemCollection, tagValue)
 # e.g. operation on item collections: anItemCollection.get(aTag)
 # no dependencies, do nothing
 pass

 @staticmethod
 def compute(tag , outPrimes):
 # e.g. operation on input item collections: anItemCollection.get(aTag)
 # e.g. operation on output item collections: anItemCollection.put(aTag, aValue)
 # e.g. operation on tag collections: aTagCollection.putTag(aTag)
 candidate = int(tag)
 if ComputeStep.isPrime(candidate):
 outPrimes.put(str(candidate), candidate)
 return True

 @staticmethod
 def isPrime(n):
 for k in xrange(3, n, 2):
 if n % k == 0:
 return False
 return True

Please refer to the to see an example of how to implement the function.Partition-String example createAwaitsList

https://wiki.rice.edu/confluence/display/HABANERO/CnC-Python+Partition+String+Example

Running this program with an input of should produce the following output:100

Running FindPrimesMain
Starting FindPrimesMain...
...
FindPrimesMain execution time: ... ms.
FindPrimesMain ends.
py: processing 100
py: Elapsed time: ... ms
Contents of py:FindPrimes.PrimesItemCollection [size=24]
'11' = 11
'13' = 13
'17' = 17
'19' = 19
'23' = 23
'29' = 29
'3' = 3
'31' = 31
'37' = 37
'41' = 41
'43' = 43
'47' = 47
'5' = 5
'53' = 53
'59' = 59
'61' = 61
'67' = 67
'7' = 7
'71' = 71
'73' = 73
'79' = 79
'83' = 83
'89' = 89
'97' = 97

	CnC-Python Find Primes Example

