Creating a New PhyloNet Command

This tutorial will guide you through adding a new example command to PhyloNet that can be executed from within the PHYLONET block of a NEXUS file.

Step 1. Prepare Existing Source

The first step in authoring a new command is to download the PhyloNet source code and its binary dependencies. The most recent version of the tool and
its source can be found here.

PhyloNet also has a few binary dependencies: anltr-runtime, mockito, and apache-commons-io.

After downloading the PhyloNet source files and dependency libraries make sure you can compile PhyloNet. JDK 1.6 or later is required.

Step 2. Create Your Command Class and extend ConmandBase

In our example we will create a new command Count Nodes that computes the number of nodes in a given network.

The first step in this process is to create our Count Nodes class and have it extend edu. ri ce. cs. bi oi nf 0. progr anms. phyl onet . conmands.
CommandBase:

package com exanpl e;

i mport edu.rice.cs. bioinfo. prograns. phyl onet. conmands. *;

inmport edu.rice.cs.bioinfo.library.|anguage. pyson._1_0.ir.bl ockcontents.*;
inmport edu.rice.cs.bioinfo.library.language.richnew ck._1_0. ast.*;

import edu.rice.cs.bioinfo.library. progranm ng. *;

import java.io.*;

inport java.util.*;

public class Count Nodes extends CommandBase

{

publ i ¢ Count Nodes(Synt axCommand noti vati ngConmand, ArraylLi st <Paraneter> parans,
Map<String, Net wor KNonEnpt y> sour cel dent ToNet wor k, Proc3<String, Integer, |nteger>
errorDet ect ed)

{

super (noti vati ngConmand, parans, sourcel dent ToNet work, errorDetected);

}

The new command class should provide the illustrated public four argument constructor with corresponding call to super . When a command is
encountered in a Phyl oNet block within a NEXUS file, it is this constructor that will be called to create the command instance.
2.1 Implement Min and Max Params

By inheriting from CommandBase your class will have to implement the following methods:

protected int getM nNunParans()
{

}

protected int get MaxNunParans()
{

}

which define the minimum and maximum number of parameters allowed for your command in the NEXUS file. It is important to keep in mind that most
commands in PhyloNet allow an optional final parameter for redirecting command output to a file instead of the console. So generally the maximum
number of allowable parameters is one more than the number supported by the command itself. Our example Count Nodes command will take a minimum
of one parameter (the name of the network to scan) and at most two parameters (the second being the optional file destination of our command's output).

https://wiki.rice.edu/confluence/pages/viewpageattachments.action?pageId=5216808
http://antlr.org
http://code.google.com/p/mockito/
http://commons.apache.org/io/

protected int getM nNunParans()

{
}

return 1;

protected int get MaxNunPar ans()

{
}

return 2;

2.2 Implement checkPar ansFor Command()

By inheriting from CormandBase your class will have to implement checkPar ansFor Command() which provides an opportunity to perform context
sensitive analysis over the command's parameters prior to execution. The function should return t r ue if no errors are detected and f al se if errors are
detected. It should also report any discovered errors to the inherited er r or Det ect ed member.

For our command, we need only to check only that the given network identifier is in fact defined in the NEXUS document:

prot ect ed bool ean checkPar ansFor Conrmand()

{

int expectedNetwor kNamePar aneterl ndex = 0; // network ident should be first paraneter in command.

/1 automatically checks for network existance and reports any errors to this.errorDetected.
Net wor KNonEnpty network = this.assert AndGet Net wor k(expect edNet wor kNanmePar anet er | ndex) ;

if(network == null) // user specified network name is invalid

{
}

_networkToScan = network; // added field to class to retain network to scan.
return true;

return fal se;

Note that we have added a field to our class _net wor kToScan to retain a reference to the specified network to scan. This will be useful in our next step.

2.3 Implement execut eCommandHel p.

The actual execution of the command takes place within the execut eConmandHel p method. In our example we will put the command execution code in
this method directly; however, it is advisable not to implement the core logic of larger commands here but instead to delegate that computation to a helper
class. The single di spl ayResul t parameter is a function for displaying text results of the command to the user. The first call to di spl ayResul t should
begin with a newline character to preserve the tool's output formatting. These results will be automatically displayed on the console or sent to an output file
based on the user's preference.

protected void execut eConmandHel p(Proc<String> di splayResult) throws | OException

{
String eNew ckNetwork = NetworkTransf ornmer.toENew ck(_networkToScan); // convert NEXUS network to extended

new ck string

/*
* convert extended network string to Network
*/
edu. rice. cs. bi oi nfo. prograns. phyl onet. structs. network. i o. ExNewi ckReader <Stri ng> enr =
new edu. ri ce. cs. bi oi nf o. prograns. phyl onet. structs. net work. i o. ExXNewi ckReader <St ri ng>(
newSt ri ngReader (eNewi ckNet wor k)) ;

edu. rice. cs. bi oi nfo. prograns. phyl onet. structs. net wor k. Net wor k<Stri ng> net;

try
{
net = enr.readNetwork();
}
cat ch(Exception e)
{
throw new Runti neException(e);
}
/*
* count and display nunber of nodes in network
*/

It erabl e<edu.rice. cs. bi oi nfo. prograns. phyl onet. structs. net wor k. Net Node<Stri ng>> al | Nodes = net.dfs();
int nodeCount = O;
for(Object node : net.dfs())

{

nodeCount ++;

}

di spl ayResul t. execute("\nNetwork contains " + nodeCount + " nodes.");

Step 3. Update ConmandFact ory

The next step is to update edu. ri ce. cs. bi oi nf 0. progr ans. phyl onet . conmands. ConmandFact or y to construct instances of the Count Nodes
command. When examining the existing structure of the CommandFact or y you will discover ani f /el se i f chain within the make method:

public class CommandFactory {

public static Comrand nake(SyntaxConmand directive, Map<String, Net wor KkNonEnpty> sour cel dent ToNet wor k,
Proc3<String, Integer, Integer> errorDetected, Random rand)

{
i f (1 ower ConmandNare. equal s("symetricdi fference") || | ower ConmandNane. equal s("rf"))
{ return new SymmetricDi fference(directive, params, sourceldent ToNetwork, errorDetected);
LI se i f (1 ower CormandNane. equal s("1ca"))
{ return new LCA(directive, paranms, sourcel dent ToNetwork, errorDetected);
}
}

To add a new command to the factory, select a lower case string name to represent the command in a NEXUS file and append an entry of the command in
the chain. In our example we will name the Count Nodes command simply " Count Nodes" :

public class CommandFactory {

public static Comrand nake(SyntaxConmand directive, Map<String, Networ kNonEnpty> sour cel dent ToNet wor k,
Proc3<String, Integer, Integer> errorDetected, Random rand)

{
éi .se i f (1 ower ConmandNane. equal s(" nexus_out"))
{ return new NexusQut (directive, parans, sourcel dent ToNetwork, errorDetected);
il se if (I ower CommandNane. equal s("count nodes"))
t return new Count Nodes(directive, parans, sourceldent ToNetwork, errorDetected);
}

This will instruct PhyloNet to create instances of the new command when named within a PHYLONET block.

Step 4. Compile and Test
At this point inclusion of a new command is complete. After recompiling PhyloNet the new command should be available. For example, the following
NEXUS file will now be processed by PhyloNet:

#NEXUS

BEG N NETWORKS;

Network net = ((a, (b, (c)x#1)MN, ((x#1,d)J,e)2) R,

END;

BEA N PHYLONET;
Count Nodes net ;

END;

	Creating a New PhyloNet Command

