
211hw9_S11
Homework 09: Symbolic Evaluation of Boolean Expressions in Java

Due: 10am Monday, April 4, 2011

Overview
Write a Java program that reduces boolean expressions (represented in the input and output streams in Scheme-like notation) to simplified boolSimp.dj
form. For the purposes of this assignment, boolean expressions are Scheme expressions constructed from:

the symbols and denoting the boolean values and ;T F true false
boolean variables (represented by symbols other than , , , , , , and that can be bound to either or .T F ! & | > ? true false
the unary function meaning .! not
the binary functions , , and denoting , , and , respectively), and& | > and or implies
the ternary function meaning .? if

The shorter names , , , , , , and are used instead of , , , , , , and for notational brevity which matters in very T F ! & | > ? true false not and or implies if
large inputs.

The course staff is providing:

a Scheme program in the file equivalent to the Java program that you are required to write;boolsimp.ss
a Java "stub" file that defines a composite hierarchy of "abstract syntax" tree classes rooted in the class representing boolSimp.dj Form
boolean expressions;
a Java library file contain a class withParser.java Parser

a method that reads a boolean expression represented in "Scheme form" and returns the corresponsing Java abstract read() Form
syntax tree and
a method that composes the visitors you must write in to reduce whatever formula the instance reduce() boolSimp.dj Parser
contains to simplified form.

a Java "stub" test file that includes some rudimentary tests of the code in the stub file.boolSimpTest.java boolSimp.dj

The stub file also includes comments showing you exactly what code you have to write to complete writing your simplifier. Of course, you BoolSimp.dj
also need to write corresponding tests and add them to the file .BoolSimpTest.java

The file is provided to enable you to test your solution on large inputs stored in files. includes two constructors Parser.java Parser.java Parser Pars
 and for building parsers to parse the boolean expression (in external text form) in the specified or er(File file) Parser(String form) File String

, respectively. Since the library class is defined in the package , you need to insert eitherFile java.io

import java.io.*;

or more specifically

import java.io.File;

at the head of a test file that uses the class on the contents of a file.Parser
To construct a for the formula in a file you must invokeParser <fileName>

new Parser(new File("<fileName>"));

If you omit the construction in the argument to and use instead, you will create a for the String new File(...) Parser "<fileName>" Parser "<file
. which is interpreted as a simple boolean variable. The input format is important because it enables us to conveniently apply your simplifier Name>" File

to formulas that are thousands of symbols long. As a result, you only have to translate the Scheme code in into corresponding cleanly-boolsimp.ss
written OO Java code by filling in the gaps in our Java stub file . You are expected to appropriately use the composite, interpreter, singleton, boolSimp.dj
and visitor patterns in the code that you write. Since the only stub files that you have to modify are and , simply boolSimp.dj boolSimpTest.java
submit expanded versions of these files via OwlSpace to submit your assignment. we will run your program on large inputs to determine if you Warning:
wrote the code correctly. Try using the large test files provided on the course wiki.

We have formatted the test files as a file rather than a because the Language Levels facility peforms no useful augmentation of JUnit test .java .dj
classes and bypassing the language levels translator avoids some annoying bugs in the implementation of that facility. When using the "Save As"
command, please remember to save you file as a file not as a file. The "Save" command always retains the file types of boolSimpTest.java .java .dj
all files.

The Scheme file includes Scheme functions and to translate Scheme lists into abstract syntax trees and vice-versa. boolsimp.ss parse unparse
Scheme provides a simple external syntax for lists (in homage to its LISP heritage) but Java does not. Hence the Java class works on Java Parser
strings instead of lists. The Java visitor class in the file performs unparsing of the abstract syntax types and to type Print BoolSimp.java Form IfForm
String.

The Scheme parsing functions rely on the following Scheme data definitions.

Given

(define-struct ! (arg))
(define-struct & (left right))
(define-struct \| (left right))
(define-struct > (left right))
(define-struct ? (test conseq alt))

a is either:boolExp

a boolean constant and ;true false
a symbol representing a boolean variable;S
(make-Not X) where is a ;X boolExp
(make-And X Y) where =X and are ;Y boolExps
(make-Or X Y) where =X and are ;Y boolExps
(make-Implies X Y) where {{X and are ; orY boolExps
(make-If X Y Z) where , , and are .X Y Z boolExps

Note: The operator must be written asor

\|

in Scheme instead of because is a metasymbol with a special meaning in Scheme.| |

Description of the Provided Scheme program
Given a parsed input of type , the simplification process consists of following four phases:boolExp

Conversion to form implemented by the function .if convert-to-if
Normalization implemented by the function .normalize
Symbolic evaluation implemented by the function .eval
Conversion back to conventional form implemented by the function .boolean convert-to-bool

These phases are described in detail in HW6.

Hints on Writing Your Java Code
The Java abstract syntax classes include a separate composite hierarchy (called) for representing boolean expression as conditionals (the type IfForm if

 in). This representation includes only three concrete variant classes, making it much easier to write the visitors that perform Exp boolsimp.ss
normalization, evaluation, and clean-up.

The visitor pattern is a straightforward but notationally involved alternative to the interpreter pattern. You can mechanically translate interpreter pattern
code to visitor pattern code. (Perhaps IDEs like Eclipse should support such transformations.) The interpreter solution to this assignment is easier to write
than the visitor solution described in the preceding program description. If you are still learning Java mechanics, you are encouraged to write an interpreter
solution first and translate it (if you can) to visitor form. A perfect interpreter solution will only be penalized 15% versus a perfect visitor solution. If you
submit an interpreter solution, your program must conform to class signatures given in the interpreter pattern support code below (just as a visitor solution
must conform to the class signatures given in the visitor pattern code below).

The interpreter version of the support code replaces the , , , , and visitors by methods ConvertToIf Normalize HeadNormalize Evaluate Print
named , , , , and .convertToIf normalize headNormalize eval print

Support Code
Here are the links for the files:

boolsimp.ss is the reference Scheme program.
BoolSimp.dj is a stub program for a visitor solution.
BoolSimpTest.java\ is a stub test file for a visitor solution.
Parser.java is a parser file for a visitor solution.

https://wiki.rice.edu/confluence/download/attachments/4437738/boolsimp.ss?version=1&modificationDate=1296057938924&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/BoolSimp.dj?version=1&modificationDate=1301674783617&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/BoolSimpTest.java?version=1&modificationDate=1296057938911&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/Parser.java?version=1&modificationDate=1296057938945&api=v2

InterpBoolSimp.dj is a stub program for an interpreter solution.
InterpBoolSimpTest.java is a stub test file for an interpreter solution.
InterpParser.java is a parser file for an interpreter solution.

InterpParser.java is distinct from because the code for the method embedded in the parser is different in the two versions.Parser.java reduce

Sample Input Files
The following files contain large formulas that can be reduced by your simplifier. Only the files named x require a larger thread stack size than bigData
the JVM default on most platforms. to handle the x files, you must set JVM argument -Xss64M for the Interactions JVM using the DrJava NOTE: bigData
Preferences command on the Edit menu. The JVM argument setting can be found on the last panel (called JVMs) in the Preferences categories tree.

littleData1\ -> "T"
littleData2\ -> "T"
littleData3\ -> "(> h (> g (> f (> e (> d (> c (! b)))))))"
littleData4\ -> "(> h (> g (> f (> e (| d (| c (| b a)))))))"
bigData0\ -> "T"
bigData1\ -> "(> j (> i (> h (> g (> f (> e (| d (| c (| b a)))))))))"

https://wiki.rice.edu/confluence/download/attachments/4437738/interpBoolSimp.dj?version=1&modificationDate=1301674783636&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/InterpBoolSimpTest.java?version=1&modificationDate=1296057938932&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/InterpParser.java?version=1&modificationDate=1296057938939&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/littleData1?version=1&modificationDate=1296057938891&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/littleData2?version=1&modificationDate=1296057938852&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/littleData3?version=1&modificationDate=1296057938843&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/littleData4?version=1&modificationDate=1296057938897&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/bigData0?version=1&modificationDate=1296057938861&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/bigData1?version=1&modificationDate=1296057938877&api=v2

	211hw9_S11

