
Comp 411 Putative Assignment
Putative Assignment: Symbolic Evaluation of Boolean Expressions in Java

Background
Comp 411 presumes familiarity with functional programming in Scheme and mastery of object-oriented design in Java, most notably how to write functional
programs (only involving immutable objects) in Java. Historically, the courses Comp 210 and 212 (and later Comp 211) covered this material. Several
years ago, the core programming curriculum was revised, de-emphasizing functional programming and object-oriented design. As a result, it is unclear
how well undergraduate students are prepared for this course. This web page presents a functional programming assignment in Java where the behavior
of the Java is specified by a purely functional program in Scheme. Students who enroll in this course should be comfortable tackling this assignment
(taken directly from Comp 211 in Spring 2011).

Overview
Write a Java program that reduces boolean expressions (represented in the input and output streams in Scheme-like notation) to BoolSimp.java
simplified form. For the purposes of this assignment, boolean expressions are Scheme expressions constructed from:

the symbols and denoting the boolean values and ;T F true false
boolean variables (represented by symbols other than , , , , , , and that can be bound to either or .T F ! & | > ? true false
the unary function meaning .! not
the binary functions , , and denoting , , and , respectively), and& | > and or implies
the ternary function meaning .? if

The shorter names , , , , , , and are used instead of , , , , , , and for notational brevity which matters in very T F ! & | > ? true false not and or implies if
large inputs.

Some sample inputs are:

T
F
x
(! x)
(| x (! x))
(& x (! x))
(> x x)

These formulas are represented internally using abstract syntax (implemented using the composite pattern) as defined in the Java stub file . BoolSimp.java
Only the last four formulas can be simplified; the preceding formulas reduce to themselves. Some much more complex sample inputs can be found in the
file . littleData1

The support code for this assignment includes:

a Scheme program in the file equivalent to the Java program that you are required to write;boolsimp.ss
a Java "stub" file for your program that defines a composite hierarchy of "abstract syntax" tree classes rooted in the class BoolSimp.java Form
representing boolean expressions;
a Java library file containing a class withParser.java Parser

a method that reads a boolean expression represented in "Scheme form" and returns the corresponsing Java abstract read() Form
syntax tree and
a method that composes the visitors you must write in to reduce whatever formula the instance contains to reduce() Parser
simplified form.

a Java "stub" test file that includes some rudimentary tests of the code in the stub file.BoolSimpTest.java BoolSimp.java

The stub file also includes comments showing you exactly what code you have to write to complete writing your simplifier. Of course, BoolSimp.java
you also need to write corresponding tests and add them to the file .BoolSimpTest.java

The file is provided to enable you to test your solution on large inputs stored in files. includes two constructors Parser.java Parser.java Parser Pars
 and for building parsers to parse the boolean expression (in external text form) in the specified or er(File file) Parser(String form) File String

, respectively. Since the library class is defined in the package , you need to insertFile java.io

import java.io.File;

at the head of a test file that uses the class on the contents of a file.Parser
To construct a for the formula in a file you must invokeParser <fileName>

new Parser(new File("<fileName>"));

https://wiki.rice.edu/confluence/download/attachments/14433851/BoolSimp.java?version=1&modificationDate=1389103691931&api=v2
https://wiki.rice.edu/confluence/download/attachments/10946871/littleData1?version=1&modificationDate=1367952353168&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/boolsimp.ss?version=1&modificationDate=1296057938924&api=v2
https://wiki.rice.edu/confluence/download/attachments/14433851/BoolSimp.java?version=1&modificationDate=1389103691931&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/Parser.java?version=1&modificationDate=1296057938945&api=v2
https://wiki.rice.edu/confluence/download/attachments/14433851/BoolSimpTest.java?version=1&modificationDate=1389103727756&api=v2
https://wiki.rice.edu/confluence/download/attachments/14433851/BoolSimp.java?version=1&modificationDate=1389103691931&api=v2
https://wiki.rice.edu/confluence/download/attachments/14433851/BoolSimp.java?version=1&modificationDate=1389103691931&api=v2
https://wiki.rice.edu/confluence/download/attachments/14433851/BoolSimpTest.java?version=1&modificationDate=1389103727756&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/Parser.java?version=1&modificationDate=1296057938945&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/Parser.java?version=1&modificationDate=1296057938945&api=v2

If you omit the construction in the argument to and use instead, you will create a for the String new File(...) Parser "<fileName>" Parser "<file
. which is interpreted as a simple boolean variable. The input format is important because it enables us to conveniently apply your simplifier Name>" File

to formulas that are thousands of symbols long. As a result, you only have to translate the Scheme code in into corresponding cleanly-boolsimp.ss
written OO Java code by filling in the gaps in our Java stub file . You are expected to appropriately use the composite, interpreter, boolSimp.java
singleton, and visitor patterns in the code that you write. Since the only stub files that you have to modify are and , boolSimp.ava boolSimpTest.java
your assignment is to create expanded versions of these files including a comprehensive test suite in boolSimpTest.java. your program must Warning:
handle large inputs like large test files provided below.

The Scheme file includes Scheme functions and to translate Scheme lists into abstract syntax trees and vice-versa. boolsimp.ss parse unparse
Scheme provides a simple external syntax for lists (consonant with its LISP heritage) but Java does not. Hence the Java class works on Java Parser
strings instead of lists. The Java visitor class in the file performs unparsing of the abstract syntax types and to Print BoolSimp.java Form IfForm
type String.

The Scheme parsing functions rely on the following Scheme data definitions.

Given

(define-struct ! (arg))bigData0
(define-struct & (left right))
(define-struct \| (left right))
(define-struct > (left right))
(define-struct ? (test conseq alt))

a is either:boolExp

a boolean constant and ;true false
a symbol representing a boolean variable;S
(make-Not X) where is a ;X boolExp
(make-And X Y) where X and are ;Y boolExps
(make-Or X Y) where X and are ;Y boolExps
(make-Implies X Y) where X and are ; orY boolExps
(make-If X Y Z) where , , and are .X Y Z boolExps

Note: The operator must be written asor

\|

in Scheme instead of because is a metasymbol with a special meaning in Scheme.| |

Description of the Provided Scheme program
Given a parsed input of type , the simplification process consists of following four phases:boolExp

Conversion to form implemented by the function .if convert-to-if
Normalization implemented by the function .normalize
Symbolic evaluation implemented by the function .eval
Conversion back to conventional form implemented by the function .boolean convert-to-bool

These phases are described in detail in .HW6 from Comp 211

Hints on Writing Your Java Code
The Java abstract syntax classes include a separate composite hierarchy (called) for representing boolean expression as conditionals (the type IfForm if

 in). This representation includes only three concrete variant classes, making it much easier to write the visitors that perform Exp boolsimp.ss
normalization, evaluation, and clean-up.

The visitor pattern is a straightforward but notationally involved alternative to the interpreter pattern. If you do not have much experience writing and
debugging Java code involving visitors, we suggest that you write a solution using the interpreter pattern first and then translate your interpreter pattern
code to visitor pattern code. (Perhaps IDEs like Eclipse should support such transformations.)

Support Code
Here are the links for the files:

boolsimp.ss is the reference Scheme program.
BoolSimp.java is a stub program for a visitor solution.
BoolSimpTest.java is a stub test file for a visitor solution.

https://wiki.rice.edu/confluence/display/cswiki/211hw6
https://wiki.rice.edu/confluence/download/attachments/4437738/boolsimp.ss?version=1&modificationDate=1296057938924&api=v2
https://wiki.rice.edu/confluence/download/attachments/14433851/BoolSimp.java?version=1&modificationDate=1389103691931&api=v2
https://wiki.rice.edu/confluence/download/attachments/14433851/BoolSimpTest.java?version=1&modificationDate=1389103727756&api=v2

Parser.java is a parser file for a visitor solution.

Sample Input Files
The following files contain large formulas that can be reduced by your simplifier. Only the files named bigData x may require a larger thread stack size than
the JVM default on most platforms. NOTE: to handle the files bigData0 and bigData1, you may need to pass the JVM argument -Xss64M for the
Interactions JVM using the DrJava Preferences command on the Edit menu. The JVM argument setting can be found on the last panel (called JVMs) in the
Preferences categories tree.

littleData1 -> "T"

littleData2 -> "T"

littleData3 -> "(> h (> g (> f (> e (> d (> c (! b)))))))"

littleData4 -> "(> h (> g (> f (> e (| d (| c (| b a)))))))"

bigData0 -> "T"

bigData1 -> "(> j (> i (> h (> g (> f (> e (| d (| c (| b a)))))))))"

https://wiki.rice.edu/confluence/download/attachments/4437738/Parser.java?version=1&modificationDate=1296057938945&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/littleData1?version=1&modificationDate=1296057938891&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/littleData2?version=1&modificationDate=1296057938852&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/littleData3?version=1&modificationDate=1296057938843&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/littleData4?version=1&modificationDate=1296057938897&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/bigData0?version=1&modificationDate=1296057938861&api=v2
https://wiki.rice.edu/confluence/download/attachments/4437738/bigData1?version=1&modificationDate=1296057938877&api=v2

	Comp 411 Putative Assignment

